Navigation Links
The developmental dynamics of the maize leaf transcriptome

Photosynthesis is arguably the most impressive feat of nature, where plants harvest light energy and convert it into the building blocks of life at fantastically high efficiency. Indeed modern civilization became possible only with the cultivation of plants for food, shelter and clothing.

While scientists have been able to discover details of the fascinating process by which plants store solar energy as chemical energy, how developing plants build and regulate their solar reactors is still poorly understood. How many genes are involved, and which are the most important? How are different cell types endowed with specific biochemical capacities? What signals fine-tune how much sugar is produced, and which bioproducts are generated? The answers to these questions have applications in agriculture, bioenergy and climate change.

Complex and multifaceted questions such as these can be addressed using a new approach to measure gene expression using high throughput sequencing. This method, coined RNAseq, is detailed in a new report from scientists at the Boyce Thompson Institute for Plant Research (BTI) and Cornell University published online in the journal Nature Genetics. The study, using the agronomically critical maize (corn) plant as a model, tracks through massive sequencing of gene transcripts, the full complement of expressed genes in a corn leaf. The researchers found that as the leaf develops, entire suites of genes are turned on and off. "Previous studies have often focused on understanding one gene or set of genes that underpin a specific pathway or process", notes Tom Brutnell, an associate scientist at the BTI and the senior author of the study, "However, these new tools have let us examine the expression of all genes in the leaf at very specific stages of development. This provides an unprecedented view of the genetic circuitry of the leaf."

While such results are exciting, they also pose big challenges as scientists work to interpret the datasets. In this study, over 25,000 genes were found to be expressed in each leaf, and nearly half of these are transcribed into at least two different forms, called splicing variants. To make sense out of this flood of information, scientists at BTI, Cornell, Yale, Iowa State and the University of Toronto collaborated to develop systems biology tools that combine computational and statistical methods to analyze large datasets. "The interface between developmental biologists, molecular biologists, and computer scientists that made this work possible, is an excellent example of why systems biology is able to unravel complex biological pathways" commented David Stern, President of BTI.

An important aspect of this work is that it provides insight into the regulation of the unusual form of photosynthesis that maize utilizes referred to as C4 that increases water and nitrogen use efficiencies under hot dry environments. "Some of the most productive food, feed and bioenergy crops utilize C4 photosynthesis including maize, sugarcane and the bioenergy grass Miscanthus", notes Brutnell "This study provides the first comprehensive analysis of gene expression in any C4 plant and thus provides the groundwork for a genetic dissection of this process".

Given the economic importance of C4 plant in the United States and around the world, these findings have numerous potential applications to agriculture. Optimizing photosynthetic capacity could not only enhance the performance of maize, but also enable far-reaching transformations of photosynthesis in species which are currently far less efficient than maize, such as rice or wheat.


Contact: Thomas Brutnell
Boyce Thompson Institute for Plant Research

Related biology news :

1. Digital zebrafish embryo provides the first complete developmental blueprint of a vertebrate
2. Carnegies Donald Brown receives lifetime achievement award from Society for Developmental Biology
3. Mouse model provides a new tool for investigators of human developmental disorder
4. Specific genetic cause of fetal alcohol-related developmental disorders found
5. Genetic marker linked to problem behaviors in adults with developmental disabilities
6. Developmental delay could stem from nicotinic receptor deletion
7. Chinese scientists discover marker indicating the developmental potential of stem cells
8. Tufts wins NCRR grant for Collaborative Cluster in Genome Structure and Developmental Patterning
9. Developmental problems: Some exist in the genes
10. Fertilizer chemicals linked to animal developmental woes
11. Developmental gene-environment interactions: A model for psychosis
Post Your Comments:
(Date:11/17/2015)... , Nov. 17, 2015  Vigilant Solutions announces ... joined its Board of Directors. --> ... after recently retiring from the partnership at TPG Capital, ... companies with over $140 Billion in revenue.  He founded ... across all the TPG companies, from 1997 to 2013.  ...
(Date:11/12/2015)...   Growing need for low-cost, easy to ... paving the way for use of biochemical sensors ... in clinical, agricultural, environmental, food and defense applications. ... medical applications, however, their adoption is increasing in ... emphasis on improving product quality and growing need ...
(Date:11/9/2015)... Nov. 9, 2015  Synaptics Inc. (NASDAQ: SYNA ... announced broader entry into the automotive market with a ... the pace of consumer electronics human interface innovation. Synaptics, ... ideal for the automotive industry and will be implemented ... Europe , Japan , ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , ... November 24, 2015 , ... Whitehouse Laboratories is ... The new stand-alone facility will be strictly dedicated to basic USP 61, USP ... existing clients the chance to have complete chemistry and micro testing performed by one ...
(Date:11/23/2015)... Nov. 23, 2015 China Cord Blood Corporation ... leading provider of cord blood collection, laboratory testing, hematopoietic ... announced its preliminary unaudited financial results for the second ... September 30, 2015. --> ... , Revenues for the second quarter of fiscal 2016 ...
(Date:11/23/2015)... and PISCATAWAY, New Jersey , ... Crystallographic Data Centre (CCDC) announces the launch ... Database (CSD) and the CSD-System, now complemented by ... CSD-Discovery to support the discovery of new molecules, ... CSD-Enterprise, the complete set of the CCDC,s applications ...
(Date:11/23/2015)... , Nov. 23, 2015  Oxis Biotech, Inc. ... Inc. [OTC: OXIS] and [Euronext Paris: OXI.PA] announced ... Masonic Cancer Center received notification from the U.S. ... proceed with their planned combination Phase 1/Phase 2 ... rights to develop and commercialize OXS-1550, a novel ...
Breaking Biology Technology: