Navigation Links
The big unknown: Factoring marine sediments into climate calculations
Date:12/4/2013

The discussion over the best ways to reduce greenhouse gas emissions and remove existing carbon dioxide from the atmosphere often includes measures that entail planting trees. But this discussion overlooks an important factor: trees are not the only plants that take up carbon dioxide. In fact, microscopic marine phytoplankton already play a critical role in regulating today's carbon cycles.

These tiny organisms consume carbon dioxide from the atmosphere and move it to marine sediments in the deep ocean in a process called "the biological pump". Currently, more than 99 per cent of the Earth's carbon is bound up in these sediments, locked away in the depths of the ocean.

A new EU-funded project called "OCEAN-CERTAIN" has been created to improve our understanding of the biological pump, so that its significance in shaping future climate change is clearer. The project will be led by researchers from the Norwegian University of Science and Technology (NTNU) in Trondheim, and will examine and compare the situations in different ocean areas on the planet.

"The marine ecosystem, from microorganisms up to fish, mitigates the accumulation of CO2 in the atmosphere through its activity, but there are major uncertainties about the importance of these processes and how they are affected by human activities," says Yngvar Olsen, a professor in NTNU's Department of Biology, and the project's coordinator. "We are a broad group of scientists from Europe, Chile and Australia, which is important in seeing the challenge from a global perspective. We are both natural scientists who will work with the ecosystem and the biological pump and social scientists who will study possible consequences for society, or people in general."

The biological pump as a process is well known to marine scientists, but there remains great uncertainty about how much carbon is bound up in ocean sediments annually, and how the process will be affected by changing climate, social and environmental conditions. This uncertainty has been problematic in predicting future climate change, and experts and politicians are eager to know more.

The project has the clear goal of providing more comprehensive and reliable information to climate scientists and politicians who must make decisions about climate actions. It will rely on collecting existing knowledge from databases and will generate new knowledge where gaps are identified.

A better understanding of the importance of the biological processes that enable the ocean to absorb carbon dioxide will have economic and social implications. The project will therefore address how changes in these processes will affect the tourism, aquaculture and fisheries sectors and how their responses may in turn affect these processes. In addition, it will address how this knowledge can be used to improve management.

In a world where carbon dioxide emissions have increased, it is important that we have a sound understanding of the natural processes that can counteract climate change, so that future climate-related predictions are better, and perhaps more important, so that we manage the oceans in a way that strengthens, rather than weakens, the biological pump.


'/>"/>

Contact: Yngvar Olsen
yngvar.olsen@ntnu.no
47-977-78249
Norwegian University of Science and Technology
Source:Eurekalert  

Related biology news :

1. Arctic study shows key marine food web species at risk from increasing CO2
2. Microplastics make marine worms sick
3. Marine reserves enhance resilience to climate change
4. Stingray movement could inspire the next generation of submarines
5. Assessing noise impact of offshore wind farm construction may help protect marine mammals
6. NOAA awards $967,000 to 11 marine debris removal projects
7. NOAA announces additions to National System of Marine Protected Areas
8. UCSB study finds climate change is causing modifications to marine life behavior
9. First global atlas of marine plankton reveals remarkable underwater world
10. Stop marine pollution to protect kelp forests
11. Discovery of the Plastisphere -- a new marine ecological community
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
The big unknown: Factoring marine sediments into climate calculations
(Date:4/17/2017)... 2017 NXT-ID, Inc. (NASDAQ: NXTD ) ... of its 2016 Annual Report on Form 10-K on Thursday April ... ... in the Investor Relations section of the Company,s website at ... at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/13/2017)... According to a new market research report "Consumer ... Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region - ... to grow from USD 14.30 Billion in 2017 to USD 31.75 Billion ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... 2017 Research and Markets has announced the ... to their offering. ... eye tracking market to grow at a CAGR of 30.37% during ... Market 2017-2021, has been prepared based on an in-depth market analysis ... and its growth prospects over the coming years. The report also ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... Personal eye wash is a basic first ... eye at a time. So which eye do you rinse first if a dangerous substance ... Plum Duo Eye Wash with its unique dual eye piece. , “Whether its ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... announced today it will be hosting a Webinar titled, “Pathology is going digital. ... Associates , on digital pathology adoption best practices and how Proscia improves lab ...
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , ... of Cancer Research, London (ICR) and ... with SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple ... as MUK nine . The University of ... is partly funded by Myeloma UK, and ICR will perform ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new study ... in frozen and fresh in vitro fertilization (IVF) transfer cycles. The ... IVF success. , After comparing the results from the fresh and frozen transfer ...
Breaking Biology Technology: