Navigation Links
Texas Biomed develops new approach to study depression; finding may lead to new marker for risk
Date:10/28/2011

Scientists at the Texas Biomedical Research Institute and Yale University have identified a new target area in the human genome that appears to harbor genes with a major role in the onset of depression.

Using the power of Texas Biomed's AT&T Genomics Computing Center (GCC), the researchers found the region by devising a new method for analyzing thousands of potential risk factors for this complex disease, a process that led them to a new biomarker that may be helpful in identifying people at risk for major depression.

"We were searching for things in psychiatric disease that are the equivalent of what cholesterol is to heart disease," said John Blangero, Ph.D., director of the GCC and a principal investigator in the study. "We wanted to find things that can be measured in everybody and that can tell you something about risk for major depression."

The study was directed by Blangero and David Glahn, Ph.D., of Yale University. It was published online in October in the journal Biological Psychiatry and supported by the National Institutes of Health.

Major depressive disorder is one of the most common and most costly mental illnesses. Studies have estimated that up to 17 percent of Americans will suffer depression at some point in their lives. The disorder has proven to be a tough challenge for geneticists. Despite strong evidence that people can inherit a susceptibility to major depression, years of study have failed to locate any of the key genes that underlie the illness. The scientists used blood samples from 1,122 people enrolled in the Genetics of Brain Structure and Function Study, a large family study that involves people from 40 extended Mexican American families in the San Antonio area.

Blangero and his colleagues looked at more than 11,000 endophenotypes, or heritable factors, and searched for the ones that were linked with the risk of major depression. They found that disease risk correlated most strongly with expression levels of a gene called RNF123, which helps regulate neuron growth.

Once they found this risk factor, further analysis directed scientists to an area on chromosome 4 containing genes that appear to regulate RNF123.

Because the RNF123 expression levels can be measured relatively easily in the blood, this finding could lead to a way of identifying people at risk for major depressive disorder, Blangero said.

"We might be able to know in advance that a person will be less able to respond to the normal challenges that come about in life," he said. "Then doctors may be able to intervene earlier after a traumatic life event to remove some of the debilitation of depression."

The study also shows the potential for using this method of analyzing a multitude of heritable traits as a way to zero in on disease-causing gene variants.

The research capitalized on the newest 'deep sequencing' technology that enables Texas Biomed scientists to search through more genetic variables. The GCC has 8,000 linked computer processors that are capable of analyzing millions of genetic variables drawn from thousands of research subjects.
'/>"/>

Contact: Joseph Carey
jcarey@txbiomed.org
210-158-9437
Texas Biomedical Research Institute
Source:Eurekalert

Related biology news :

1. Earth scientists keep an eye on Texas
2. 7 Texas mammals listed as threatened on Global Mammal Assessment
3. Texas A&M anthropologist discovers long-lost primate in Indonesia
4. Texas invests record $3.5 million in startup cofounded by UTs Mauro Ferrari
5. Texas College Police Unit Deploys BIO-key(R) Mobile Data System
6. UT Southwestern scientist honored among best in Texas research
7. Texas Medical Center researchers win collaborative grants
8. Famous fossil Lucy scanned at the University of Texas at Austin
9. Texas researchers provide emissions data for livestock industry
10. Texas Obesity Research Center at UH assembles researchers to discuss obesity
11. Texas-sized tract of single-celled clones
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/15/2016)... March 15, 2016 Yissum Research Development ... technology-transfer company of the Hebrew University, announced today the ... sensing technology of various human biological indicators. Neteera Technologies ... million from private investors. ... the detection of electromagnetic emissions from sweat ducts, enables ...
(Date:3/10/2016)... , March 10, 2016 ... new market research report "Identity and Access Management Market ... Audit, Compliance, and Governance), by Organization Size, by Deployment, ... 2020", published by MarketsandMarkets, The market is estimated to ... 12.78 Billion by 2020, at a Compound Annual Growth ...
(Date:3/8/2016)... , March 8, 2016   Valencell , ... today announced it has secured $11M in Series ... Tech, a new venture fund being launched by ... participation from existing investors TDF Ventures and WSJ ... to continue its triple-digit growth and accelerate its ...
Breaking Biology News(10 mins):
(Date:5/3/2016)... ... May 03, 2016 , ... In a list published by the Boston ... 76 fastest-growing private companies; a small percentage of the state's 615,000+ small businesses. The ... percent change in revenue from 2012 to 2015. , As this award ...
(Date:5/3/2016)... May 3, 2016 - And ... and Producers of Those Competitor Biologics  - ... Activities and Prospects ,  Who are the ... And what are their sales potentials? Discover, in our ... results, trends, opportunities and revenue forecasting. ...
(Date:5/2/2016)... ... May 02, 2016 , ... Meister Media ... the fresh look and added functionality give the agricultural world a taste of ... dynamic shift in agriculture – from precision farming via satellites and Unmanned Aerial ...
(Date:4/29/2016)... ... April 29, 2016 , ... Amendia, Inc., ... surgical procedures, today announced the completion of a significant transaction and partnership that ... future customers and partners. Kohlberg & Company, L.L.C. (“Kohlberg”), a leading private ...
Breaking Biology Technology: