Navigation Links
Texas A&M researchers develop tool to study complex clusters of genes
Date:7/2/2008

COLLEGE STATION, July 2, 2008 -- Two Texas A&M University researchers have developed a computational tool that will help scientists more accurately study complex units of clustered genes, called operons, in bacteria. The tool, which allows scientists to analyze many bacterial genomes at once, is more accurate than previous methods because it starts from experimentally validated data instead of from statistical predictions, they say. The researchers hope their tool will lead to a better understanding of the complex genetic mechanisms involved in a cell's functioning.

"It's a very complicated mechanism inside a cell that makes the whole thing work, and operons are one of the important components in this process," said Sing-Hoi Sze, Texas A&M computer science, biochemistry and biophysics researcher. "We want to understand how these genetic mechanisms work because DNA codes proteins, and proteins are what make up everything in your body. In order to understand the genetic processes in more complex organisms, we have to start with the simpler organisms like bacteria."

Sze and his colleague, computer science researcher Qingwu Yang, detail their computational tool and its implications in their paper published in the journal Genome Research.

An operon is a unit of genes that are clustered together and have similar functions, Sze said. Genes are controlled by a mechanism called a promoter, which turns the genes on or off. In higher organisms, like humans, there is usually a specific promoter that controls each gene separately, Sze explained. However, a bacteria's genome has to be compact, so there are a lot of genes clustered close together that are controlled by the same promoter, and this set of genes is called an operon.

Different species of bacteria have similar genes, but their genes may not have the same layout or clustering pattern, so their operons may function differently, Sze said. Scientists want to understand how the operons in each species of bacteria are different, how the genes in the operons are organized, and how the operons function.

Because of time and resource constraints, however, researchers cannot directly study in detail the genomes of all of the thousands of species of bacteria and can only carry out experiments on some of them, Sze explained. So researchers need a computational tool to help them predict where similar clusters of genes are in different species of bacteria so they can better focus their experiments, he said.

For each level of complexity in organisms, there is a model organism that scientists center their experiments on, and for bacteria, the model organism is E. coli. Because E. coli is a model organism, scientists have studied it in great detail and have a large amount of experimentally validated data on its genome and the operons that function, Sze said.

Sze and Yang's computational tool starts with a known and experimentally validated E. coli operon and then searches each of hundreds of separate species of bacteria for genes that are related to those in the E. coli operon. Once the tool has located related genes in a bacterium, it then checks to see if there is a strong clustering of the genes. It does this by using a statistical procedure that computes which genes are statistically very close to each other when you compare it to a random situation of genes, Sze explained.

"Imagine putting genes in a random order," Sze said. "When placed randomly, two specific genes are likely to be located at a far distance from each other. But if there is clustering, then the genes will be much closer to each other than they would be by chance."

So by using Sze and Yang's tool, scientists can easily locate sub-blocks of genes in different bacteria that are arranged in a similar fashion as one of the operons in E. coli. "If biologists are interested in a particular E. coli operon, they can use our tool to find where the operon is in the different bacteria," Sze said. "They can then analyze the differences in the operon in the different bacteria and see if there are any interesting relationships."

Sze said his and Yang's tool is an improvement on previous methods because it is a new way to analyze many bacterial genomes at the same time. It is also more accurate than previous methods in which scientists start by simply using a statistical method to predict the location of an operon in a bacterial genome. Sze and Yang, however, show that it is more accurate to start from a known and experimentally validated E. coli operon to find similar operons in other bacteria.

"Eventually, we want to try to improve our tool to make it better and more accurate," Sze said. "Although our tool can analyze a lot of bacteria at the same time, it compares each bacterium to E. coli separately. So the ultimate goal would be to develop a tool that will analyze them all together."


'/>"/>

Contact: Sing-Hoi Sze
shsze@tamu.edu
979-845-5009
Texas A&M University
Source:Eurekalert

Related biology news :

1. Male seahorses are natures Mr. Mom, Texas A&M researchers say
2. Male seahorses are natures Mr. Mom, Texas A&M researchers say
3. UTMB inventions win University of Texas System commercialization awards
4. Underwater microscope helps prevent shellfish poisoning along Gulf Coast of Texas
5. Researchers confirm dead zone off Texas coast since 1985
6. Texas A&M scientists say early Americans arrived earlier
7. Texas A&M testing oral contraceptives for animals
8. Texas Hospital nations first to use large-scale cocoon strategy against whooping cough
9. Rices West honored as one of Texas best researchers
10. UT Southwestern scientist honored among best in Texas research
11. Gulf of Mexico dead zone to be studied by University of Texas at Austin marine scientists
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/3/2016)... --> --> Fourth quarter 2015:   ... with fourth quarter of 2014. Gross margin was 46% (32). ... Earnings per share increased to SEK 6.39 (loss: 0.49). ... --> --> January to ... up 1,142% compared with 2014. Gross margin was 43% (31). ...
(Date:2/3/2016)... Feb. 3, 2016 ... of the "Emotion Detection and Recognition ... and Others), Software Tools (Facial Expression, Voice ... Users,and Regions - Global forecast to 2020" ... --> http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ) has announced the ...
(Date:2/2/2016)... NEW YORK , Feb. 2, 2016 /PRNewswire/ ... Potentials of that Rising Market Are you ... new analysis forecasts revenues for checkpoint inhibitors. Visiongain,s ... world market, submarket, product and national level. ... Instead discover what progress, opportunities and revenues those ...
Breaking Biology News(10 mins):
(Date:2/12/2016)... MedGenome,s Commitment Will Help ... of Complex Diseases Such as Cancer, Metabolic Disorders, ... --> --> MedGenome, the market ... leading provider of genomics research services globally, today ... GenomeAsia 100K consortium as a founding member. ...
(Date:2/11/2016)... , Germany and ... QGEN ; Frankfurt Prime Standard: QIA) today ... Targeted RNA Panels for gene expression profiling, expanding QIAGEN,s ... (NGS). The panels enable researchers to select from over ... changes and discover interactions between genes, cellular phenotypes and ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... cutting-edge information focused on the development and manufacture of biopharmaceuticals and therapeutics, ... sponsor of the 2016 BioProcess International Awards – Recognizing Excellence in the ...
(Date:2/11/2016)... , ... February 11, 2016 , ... ... more than 150 years, continues today to pursue the highest level of accuracy ... analytical instruments: the AR9 Refractometer and the AR5 Refractometer. Accurate, reliable and ...
Breaking Biology Technology: