Navigation Links
Texas A&M research contributes to improved ultrasound imaging
Date:3/5/2013

Ultrasound technology could soon experience a significant upgrade that would enable it to produce high-quality, high-resolution images, thanks to the development of a new key material by a team of researchers that includes a professor in the Department of Biomedical Engineering at Texas A&M University.

The material, which converts ultrasound waves into optical signals that can be used to produce an image, is the result of a collaborative effort by Texas A&M Professor Vladislav Yakovlev and researchers from King's College London, The Queen's University of Belfast and the University of Massachusetts Lowell. Their findings appear in the current issue of "Advanced Materials."

The engineered material, known as a "metamaterial," offers significant advantages over conventional ultrasound technology, which generates images by converting ultrasound waves into electrical signals, Yakovlev explains. Although that technology has advanced throughout the years think of the improvement in sonogram images it is still largely constrained by bandwidth and sensitivity limitations, he says. These limitations, he adds, have been the chief obstacle when it comes to producing high-quality images that can serve as powerful diagnostic tools.

The metamaterial developed by Yakovlev and his colleagues is not subject to those limitations, primarily because it converts ultrasound waves into optical signals rather than electrical ones. The optical processing of the signal does not limit the bandwidth or sensitivity of the transducer (converter) and that's important for producing highly detailed images, Yakovlev says.

"A high bandwidth allows you to sample the change of distance of the acoustic waves with a high precision," Yakovlev notes. "This translates into an image that shows greater detail. Greater sensitivity enables you to see deeper in tissue, suggesting we have the potential to generate images that might have previously not been possible with conventional ultrasound technology."

In other words, this new material may enable ultrasound devices to see what they haven't yet been able to see. That advancement could significantly bolster a technology that is employed in a variety of biomedical applications. In addition to being used for visualizing fetuses during routine and emergency care, ultrasound is used for diagnostic purposes in incidents of trauma and even as a means of breaking up tissue and accelerating the effects of drugs therapies.

While Yakovlev's research is not yet ready for integration into ultrasound technology, it has successfully demonstrated how conventional technology can be substantially improved by using the newly engineering material created by his team, he notes.

The material, he notes, consists of golden nanorods embedded in a polymer known as polypyrrole. An optical signal is sent into this material where it interacts with and is altered by incoming ultrasound waves before passing through the material. A detection device would then read the altered optical signal, analyzing the changes in its optical properties to process a higher resolution image, Yakovlev explains.

"We developed a material that would enable optical signal processing of ultrasound," Yakovlev says. "Nothing like this material exists in nature so we engineered a material that would provide the properties we needed. It has greater sensitivity and broader bandwidth. We can go from 0-150 MHz without sacrificing the sensitivity. Current technology typically experiences a substantial decline in sensitivity around 50 MHz.

"This metamaterial can efficiently convert an acoustic wave into an optical signal without limiting the bandwidth of the transducer, and its potential biomedical applications represent the first practical implementation of this metamaterial."


'/>"/>

Contact: Ryan Garcia
979-847-5833
Texas A&M University
Source:Eurekalert

Related biology news :

1. Monarch butterflies down again this year as decline continues, says Texas A&M expert
2. NASAs Landsat satellites see Texas crop circles
3. NASA satellite measurements imply Texas wind farm impact on surface temperature
4. University of North Texas Health Science Center Advances Forensic Research by Investing in Semiconductor DNA Sequencing Technology
5. Diet of early human relative Australopithecus shows surprises, says Texas A&M researcher
6. Mining cleanup benefits from Texas A&M expertise
7. University of Texas Medical Branch selected to manage Center for Polar Medical Operations
8. NSBRI renews space life sciences graduate programs at MIT, Texas A&M
9. BP Biofuels, Texas AgriLife Research sign agreement to advance biofuel feedstock development
10. Controlling gait of horses may be possible, says key study from Texas A&M
11. Newly discovered letters and translated German ode expand Texas link to infamous Bone Wars
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... an innovation leader in attendance control systems is proud to announce the introduction of ... make sure the right employees are actually signing in, and to even control the ... ... ... ...
(Date:6/7/2016)... 7, 2016  Syngrafii Inc. and San Antonio ... that includes integrating Syngrafii,s patented LongPen™ eSignature "Wet" ... collaboration will result in greater convenience for SACU ... while maintaining existing document workflow and compliance requirements. ... Highlights: ...
(Date:6/2/2016)... 2016 The Department of Transport Management ... 44 million US Dollar project, for the , ... Personalization, Enrolment, and IT Infrastructure , to ... and implementation of Identity Management Solutions. Numerous renowned international vendors ... Decatur was selected for the most compliant and ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a ... eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research ... by providing practical tips, tools, and strategies for clinical researchers. , “The landscape ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
(Date:6/23/2016)... June 23, 2016 A person commits a crime, ... scene to track the criminal down. An outbreak ... and Drug Administration (FDA) uses DNA evidence to track down ... Sound far-fetched? It,s not. The FDA has increasingly used ... investigations of foodborne illnesses. Put as simply as possible, whole ...
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
Breaking Biology Technology: