Navigation Links
Temple researchers discover key to heart failure, new therapies on horizon
Date:3/5/2013

(Philadelphia, PA) Some 5.8 million Americans suffer from heart failure, a currently incurable disease. But scientists at Temple University School of Medicine's (TUSM) Center for Translational Medicine have discovered a key biochemical step underlying the condition that could aid the development of new drugs to treat and possibly prevent it.

"Drugs we currently use for heart failure are not very effective," explained lead investigator Walter J. Koch, PhD, Professor and Chairman of the Department of Pharmacology at TUSM, and Director of the Center for Translational Medicine at TUSM. But, he added, "The more we learn about the disease mechanism, the more drug targets we'll find."

That is what Koch and colleagues at Thomas Jefferson University and the University of California, Davis, achieved in their latest study, which appears in the March 5 issue of the online journal PLOS ONE. The report is the first to show that an enzyme called GRK5 (G-protein coupled receptor kinase 5) can gain access to a heart cell's nucleus its command center, where control of its genes is maintained by way of a transport mechanism involving calcium and a protein known as calmodulin. Once calcium and calmodulin deliver GRK5 to the nucleus, the enzyme usurps control over specific genes, ultimately causing hypertrophy, in which heart cells grow larger in size. Hypertrophy is a biological hallmark of heart failure.

GRK5 had previously been identified as a key player in maladaptive cardiac hypertrophy, which is the end stage of heart failure, when the heart muscle becomes enlarged and unable to pump enough blood to keep vital organs functioning. While GRK5's ability to get inside the nucleus was known, Koch and colleagues worked to fill in the missing links in its transport mechanism. Those links, they hope, will not only allow them to better understand GRK5's role in causing heart cells to increase in size but also find ways to block that process to more effectively treat heart failure.

The GRK5 enzyme is a unique member of the GRK family, owing to its presence in the nucleus. Its journey begins at the cell membrane, where signals received by a molecule at the cell surface known as a Gq-coupled receptor prompt "escorts" one of which is calmodulin, as the researchers discovered to attach to GRK5 and guide it to the nucleus.

The team found that GRK5's transport requires calmodulin after examining different places on the enzyme where various escort molecules attach. They then introduced mutations that altered the attachment sites. Only when calmodulin-binding residues on GRK5 were mutated was the enzyme prevented from reaching the nucleus. Those mutations led to dramatic decreases in nuclear GRK5 levels and corresponding declines in the activity of genes known to drive cardiac hypertrophy. Calmodulin's ability to bind to GRK5 is in turn dependent on calcium. The same results were obtained both in vitro, using human heart muscle cells cultivated under laboratory conditions, and in vivo, in mice.

The team's research also marks a breakthrough in scientists' understanding of the role of neurohormones in hypertrophy. Released by specialized neurons into the bloodstream, neurohormones have long been cited as a cause of heart cell enlargement.

"One of the novel findings to fall out of this paper is that not all hypertrophic signals from neurohormones are the same," Koch explained. "That's something to keep in mind as we move forward."

The next step, according to Koch, is to test the ability of different agents to keep GRK5 out of the nucleus. "We are now discussing a trial on inhibition of another cardiac GRK, GRK2," he said. He cautioned, however, that trials in patients with GRK5 inhibition are years away. First, agents capable of blocking GRK5 transport must be identified and tested in animals.

The work is an important advance for Temple's Center for Translational Medicine. GRK5 enters the pipeline of novel drug targets under investigation by the Center's scientists and clinicians, who share the common goal of coordinating clinical practice and basic research to speed the delivery of new therapies to patients.

"It's another entry into larger, pre-clinical animal studies," Koch said. "Something new to start down the path of translational medicine."


'/>"/>

Contact: Jeremy Walter
Jeremy.Walter@tuhs.temple.edu
215-707-7882
Temple University Health System
Source:Eurekalert

Related biology news :

1. Losing protein helps heart recover, say Temple scientists
2. Temple-Penn researchers identify calcium accelerator to keep cell power supply going
3. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
4. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
5. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
6. UNH researchers find African farmers need better climate change data to improve farming practices
7. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
8. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
9. Researchers print live cells with a standard inkjet printer
10. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
11. Researchers reveal how a single gene mutation leads to uncontrolled obesity
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems ... seamlessly log work hours, for employers to make sure the right employees are actually ... http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. and ... business relationship that includes integrating Syngrafii,s patented LongPen™ ... project. This collaboration will result in greater convenience ... credit union, while maintaining existing document workflow and ... ...
(Date:6/2/2016)... June 2, 2016 The Department of ... awarded the 44 million US Dollar project, for the ... Plates including Personalization, Enrolment, and IT Infrastructure , ... the production and implementation of Identity Management Solutions. Numerous renowned ... Decatur was selected for the most ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Liquid Biotech ... funding of a Sponsored Research Agreement with The ... cells (CTCs) from cancer patients.  The funding will ... levels correlate with clinical outcomes in cancer patients ... will then be employed to support the design ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and ... and the 6000i models are higher end machines that use the more unconventional z-dimension ... light beam from the bottom of the cuvette holder. , FireflySci has developed ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... YM (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. ... microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory and ...
Breaking Biology Technology: