Navigation Links
Team uses forest waste to develop cheaper, greener supercapacitors

CHAMPAIGN, Ill. Researchers report that wood-biochar supercapacitors can produce as much power as today's activated-carbon supercapacitors at a fraction of the cost and with environmentally friendly byproducts.

The report appears in the journal Electrochimica Acta.

"Supercapacitors are power devices very similar to our batteries," said study leader Junhua Jiang, a senior research engineer at the Illinois Sustainable Technology Center at the University of Illinois. While batteries rely on chemical reactions to produce sustained electrical energy, supercapacitors collect charged ions on their electrodes (in this case, the biochar), and quickly release those ions during discharge. This allows them to supply energy in short, powerful bursts during a camera flash, for example, or in response to peak demand on the energy grid, Jiang said.

"Supercapacitors are ideal for applications needing instant power and can even provide constant power like batteries, but at lower cost," he said. They are useful in transportation, electronics and solar- and wind-power energy storage and distribution.

Many of today's supercapacitors use activated carbon usually from a fossil-fuel source, Jiang said.

"Costly and complicated procedures are normally used to develop the microstructures of the carbon to increase the number of pores and optimize the pore network," he said. "This increases the surface area of the electrode and the pores' ability to rapidly capture and release the ions."

In wood-biochar supercapacitors, the wood's natural pore structure serves as the electrode surface, eliminating the need for advanced techniques to fabricate an elaborate pore structure. Wood biochar is produced by heating wood in low oxygen.

The pore sizes and configurations in some woods are ideal for fast ion transport, Jiang said. The new study used red cedar, but several other woods such as maple and cherry also work well.

Expensive and corrosive chemicals are often used to prepare the activated carbon used in supercapacitors, giving the electrodes the physical and chemical properties they need to function well, Jiang said.

"The use of those chemicals will probably impose some environmental impacts," he said. "This should be avoided or at least substantially reduced."

Jiang and his team activated their biochar with mild nitric acid, which washed away the ash (calcium carbonate, potassium carbonate and other impurities) in the biochar. The byproduct of this process has a beneficial use, Jiang said: The resulting solution of nitrate compounds can be used as fertilizer.

These simple approaches dramatically cut the material and environmental costs of assembling supercapacitors.

"The material costs of producing wood-biochar supercapacitors are five to 10 times lower than those associated with activated carbon," Jiang said. And when a biochar supercapacitor has reached the end of its useful life, the electrodes can be crushed and used as an organic soil amendment that increases fertility.

"The performance of our biochar materials is comparable to the performance of today's advanced carbon materials, including carbon nanotubes and graphenes," Jiang said. "We can achieve comparable performance with much less cost and probably much lower environmental costs."


Contact: Diana Yates
University of Illinois at Urbana-Champaign

Related biology news :

1. Risk of Amazon rainforest dieback is higher than IPCC projects
2. Historic trends predict future global reforestation unlikely
3. Heavily logged forests still valuable for tropical wildlife
4. An unprecedented threat to Perus cloud forests
5. Climate change may speed up forests life cycles
6. 400-year study finds Northeast forests resilient, changing
7. Red cedar tree study shows that Clean Air Act is reducing pollution, improving forests
8. Woodland salamanders indicators of forest ecosystem recovery
9. Full genome map of oil palm indicates a way to raise yields and protect rainforest
10. Computer can infer rules of the forest
11. Black bears return to Missouri indicates healthy forests
Post Your Comments:
Related Image:
Team uses forest waste to develop cheaper, greener supercapacitors
(Date:10/29/2015)... 29, 2015 Daon, a global leader in ... released a new version of its IdentityX Platform ... North America have already installed IdentityX v4.0 ... a FIDO UAF certified server component as ... activate FIDO features. These customers include some of the ...
(Date:10/29/2015)... YORK , Oct. 29, 2015 ... technology, announced a partnership with 2XU, a global ... to deliver a smart hat with advanced bio-sensing ... and other athletes to monitor key biometrics to ... the strategic partnership, the two companies will bring together ...
(Date:10/26/2015)... October 26, 2015 ... adds Biometrics Market Shares, ... as well as Emerging Biometrics Technologies: ... to its collection of IT and ... . --> ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... (PRWEB) , ... November 27, 2015 , ... ... Program that includes over 2,000 technical presentations offered in symposia, oral sessions, ... and applied spectroscopy, covers a wide range of applications such as, but not ...
(Date:11/26/2015)... 26, 2015 --> ... in imaging technologies, announced today that it has received a ... the Horizon 2020 European Union Framework Programme for Research and ... trial in breast cancer. , --> ... --> --> The study aims to ...
(Date:11/25/2015)... 25, 2015 2 nouvelles études permettent ... les différences entre les souches bactériennes retrouvées dans la ... des êtres humains . Ces recherches  ouvrent une nouvelle ... prise en charge efficace de l,un des problèmes ... chats .    --> 2 nouvelles études ...
(Date:11/25/2015)... , Nov. 25, 2015  Neurocrine Biosciences, Inc. (Nasdaq: ... , President and CEO of Neurocrine Biosciences, will be ... in New York . ... the website approximately 5 minutes prior to the presentation ... of the presentation will be available on the website ...
Breaking Biology Technology: