Navigation Links
Targeting a cure: Research looks at developing a bull's-eye therapy to combat lung cancer
Date:8/22/2011

MANHATTAN, KAN. -- A Kansas State University professor is trying to create a patient-friendly treatment to help the more than 220,000 people who are diagnosed with lung cancer each year.

Masaaki Tamura, associate professor of anatomy and physiology, and his research team are working on several projects that use nanoparticles to treat and directly target the "bull's-eye": cancer cells.

It's estimated that nearly 156,940 people will die from lung-related cancer this year, according to the American Cancer Society. Lung cancer-related deaths are higher than the next three common cancer-related deaths combined: colon, breast and pancreatic cancers.

Given lung cancer's high mortality rate, Tamura has focused his research on peptide nanoparticle-based gene therapy, which is the process of treating diseases by introducing therapeutic genes. His research team is collaborating with University of Kansas researchers to develop a way to treat cancer other than current chemotherapy practices.

"We want to generate a safe patient-friendly therapy," Tamura said.

Cancer develops from our own bodies, Tamura said, which makes it very difficult for traditional chemotherapy to distinguish cancer cells from healthy cells. As a result, chemotherapy often kills both cancer cells and healthy cells, which is why patients often experience whole body reactions to treatment, such as hair loss, diarrhea and vomiting. If the chemotherapy treatment damages intestines, it often has fatal consequences for patients.

Tamura has found the potential for safer therapy in cationic peptide nanoparticles. This small peptide helps transfer an important gene called angiotensin II type 2 receptor, which helps to maintain cardiovascular tissue. By attaching this receptor gene to peptide nanoparticles, Tamura hopes to create a form of treatment that can directly target cancer cells without damaging healthy cells.

"The peptide itself is a very safe material and it has no harmful effects," said Tamura, who is one of the first researchers to use the peptide for cancer treatment. "The gene is actually already expressed in our body -- everybody has this gene."

Here is how the cancer treatment works: The receptor gene containing the nanoparticles spreads to only cancer tissue since the blood vessels in cancer tissues are flimsy. The nanoparticles help the receptor gene kill the cancer cells. The immune system is then stimulated to prevent the cancer from growing back.

"This is very exciting because our own immune system can prevent cancer growth," Tamura said.

While the receptor gene works well for tumors that are easier to reach in the body, cancers that are deep within the body, such as gastric or pancreatic cancers, are more difficult to treat. Sometimes the gene needs help targeting and reaching the cancerous cells. That's where the peptide comes in. It can guide the receptor gene directly to the cancer cells so treatment can begin.

Working with lungs also provides a special advantage. If the researchers can develop some sort of spray that contains the peptide, it can help the peptide go straight into the lungs. It's noninvasive to go through the lungs and makes it easier for the peptide to enter the circulatory system and travel to other cancerous tissue.

The cationic peptide was developed by a KU research team led by Cory Berkland, an associate professor of pharmaceutical chemistry. After developing the peptide, they turned to Tamura and his team for help evaluating, testing and developing the peptide nanoparticle therapy. The two schools have been working together on the project for three years. Researchers hope to develop their targeted peptide procedure into a treatment that humans can use.

"It has really been nice for the two schools to work together on this project because Kansas is such a hotbed for the biomedical industry right now," Tamura said.

Tamura is also involved in Kansas State University research of the cancer therapeutic possibilities of umbilical cord matrix stem cells. He is on a team of university researchers who have received a patent addressing procedures used to gather stem cells from umbilical cords -- a less controversial source of stem cells that are effective at treating cancer. These stem cells do not generate any additional tumors and can travel deep inside the inflammatory tissue where cancer is located.


'/>"/>

Contact: Masaaki Tamura
masaakit@k-state.edu
785-532-4825
Kansas State University
Source:Eurekalert

Related biology news :

1. Motor nerve targeting to limb muscles is controlled by ephrin proteins
2. Twin nanoparticle shown effective at targeting, killing breast cancer cells
3. Peregrines PS-targeting antibodies highlighted in AACR Annual Meeting studies
4. Targeting children effective use of limited supplies of flu vaccine and could help control flu spread
5. Targeting helpers of heat shock proteins could help treat cancer, cardiovascular disease
6. UCLA researchers discover new molecular pathway for targeting cancer, disease
7. Antibody targeting of glioblastoma shows promise in preclinical tests, say Lombardi researchers
8. Lose the fat: Targeting grease to curtail sewer overflows
9. Advances reported in quest for drugs targeting childhood cancer
10. Peregrine reports new study from Duke shows anti-HIV potential of targeting PS on cells
11. Targeting a waterborne foe
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/30/2016)... -- higi SH llc (higi) announced today the launch ... industry thought-leaders and celebrity influencers looking to encourage, ... steps to live healthier, more active lives. ... built the largest self-screening health station network in ... have conducted over 185 million biometric screenings.  The ...
(Date:11/29/2016)... Nearly one billion matches per second with DERMALOG,s high-speed AFIS    ... ... DERMALOG is Germany's largest Multi-Biometric supplier: The ... Identification Systems) ... Germany's largest Multi-Biometric supplier: The company's Fingerprint Identification System is part of ...
(Date:11/22/2016)... November 22, 2016 According to the new market ... Print, Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and Software), Function (Contact ... MarketsandMarkets, the market is expected to grow from USD 10.74 Billion in ... 16.79% between 2016 and 2022. Continue Reading ... ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... CARDIFF, UK (PRWEB) , ... December 08, 2016 ... ... high precision light to control cells — optogenetics — is key to exciting ... state of the art, spatially patterned light projected via free-space optics stimulates small, ...
(Date:12/8/2016)... (PRWEB) , ... December 08, 2016 , ... ... data bioInformatics portal. In response to client demand KbioBox developed a sophisticated “3 ... biodesign program. Both are accessible from KBioBox’s new website, https://www.kbiobox.com/ ...
(Date:12/8/2016)... 8, 2016 Soligenix, Inc. (OTCQB: SNGX) (Soligenix ... developing and commercializing products to treat rare diseases where ... it will be hosting an Investor Webcast Event Friday, ... origins of innate defense regulators (IDRs) as a new ... mucositis and the recently announced and published Phase 2 ...
(Date:12/8/2016)... Dec. 8, 2016   Biocept, Inc . ... provider of clinically actionable liquid biopsy tests to ... clinical data featuring its Target Selector™ Circulating Tumor ... for the detection of actionable biomarkers in patients ... sponsored by Sara Cannon Research Institute (SCRI), the ...
Breaking Biology Technology: