Navigation Links
Taming the molecule's Dr. Jekyll and Mr. Hyde
Date:6/14/2011

Many organic molecules are non-superimposable with their mirror image. The two forms of such a molecule are called enantiomers and can have different properties in biological systems. The problem is to control which enantiomer you want to produce a problem that has proved to be important in the pharmaceutical industry. Researchers at the University of Gothenburg have now come up with a new method to control the process.

"Organic chemists think that it's impossible to create only one of the enantiomers without introducing some kind of optical activity into the reaction, but I've succeeded," says Theonitsa Kokoli at the University of Gothenburg's Department of Chemistry. "My method will allow the industry to produce the version they want without the use of a catalyst."

The phenomenon of non-superimposable mirror-image molecular structures is known as chirality. The two enantiomers can be compared to a pair of hands; they are non-superimposable mirror images of each other. A consequence of the different properties in biological systems is that a molecule can behave either as Dr Jekyll or Mr Hyde. The different characteristics in the enantiomers can be harmless, like in the limonene molecule. One enantiomer smells like orange and the other like lemon.

Thalidomide is a good example of how different forms of the same molecule can have disastrous consequences. One of the enantiomers was calming and eased nausea in pregnant women, while the other caused serious damage to the foetus. The thalidomide catastrophe is one of the reasons that a lot of research is devoted to chirality, as it is absolutely vital to be able to control which form of the molecule that is produced. Research on chirality has resulted in several Nobel Prizes over the years.

In biomolecules like DNA and proteins only one of the enantiomers exists in nature. In contrast to biomolecules, the same does not apply when chiral compounds are created synthetically in the lab. Generally an equal amount of both enantiomers is produced. One way of creating an excess of one enantiomer is to use a chiral catalyst, but this only transfers the properties that are already present in the catalyst.

"I've been working with absolute asymmetric synthesis instead, where optical activity is created," says Kokoli. "This is considered impossible by many organic chemists. I've used crystals in my reactions, where the two forms have crystallised as separate crystals, which in itself is fairly unusual. The product that was formed after the reactions comprised just one enantiomer."

While the results of Kokoli's research are particularly significant for the pharmaceuticals industry, they can also be used in the production of flavourings and aromas.


'/>"/>

Contact: Theonitsa Kokoli
theonits@chem.gu.se
46-031-786-9107
University of Gothenburg
Source:Eurekalert  

Related biology news :

1. Taming wild grapes for better wine
2. RNA molecules, delivery system improve vaccine responses, effectiveness
3. Bare bones of crystal growth: Biomolecules enhance metal contents in calcite
4. Linking Proteins, Wires, Dots, and Molecules into Useful Devices
5. Argonne scientists discover possible mechanism for creating handedness in biological molecules
6. Molecules in the spotlight
7. Shape changes in aroma-producing molecules determine the fragrances we detect
8. Researchers unzip molecules to measure interactions keeping DNA packed in cells
9. Measuring molecules to improve drug design
10. Engineers create intelligent molecules that seek-and-destroy diseased cells
11. New models question old assumptions about how many molecules it takes to control cell division
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Taming the molecule's Dr. Jekyll and Mr. Hyde
(Date:3/27/2017)... March 27, 2017  Catholic Health Services (CHS) ... Systems Society (HIMSS) Analytics for achieving Stage 6 ... sm . In addition, CHS previously earned a ... using an electronic medical record (EMR). ... level of EMR usage in an outpatient setting.  ...
(Date:3/23/2017)... PUNE, India , March 23, 2017 The report ... Equipment, Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by ... growing at a CAGR of 29.63% between 2017 and 2022. ... ... Logo ...
(Date:3/22/2017)... 2017 Optimove , provider of ... such as 1-800-Flowers and AdoreMe, today announced two ... Replenishment. Using Optimove,s machine learning algorithms, these features ... replenishment recommendations to their customers based not just ... customer intent drawn from a complex web of ...
Breaking Biology News(10 mins):
(Date:9/19/2017)... , ... September 19, 2017 , ... ... largest group of funded early-stage tech companies. “Grit” author Angela Duckworth and her ... joining the ic@3401 community is Cooley, an international law firm with decades of ...
(Date:9/19/2017)... ... 2017 , ... The new and improved Oakton® pocket testers, from Cole-Parmer, stand ... with a new cap design that is versatile, functional and leakproof. They are ideal ... test water quality. , The Oakton pocket testers have many user-friendly and functional features. ...
(Date:9/19/2017)... , Sept. 19, 2017 ValGenesis Inc., ... (VLMS) is pleased to announce the strategic partnership with ... provide clients with validation services using the latest technology ... VTI will provide clients with efficient and cost-effective validation ... marketing partner for the ValGenesis VLMS system. ...
(Date:9/19/2017)... ... 2017 , ... Molecular Devices, LLC, a leader in protein ... the CloneSelect™ Single-Cell Printer™ in North America. This novel system utilizes sophisticated ... documentation of monoclonality for use in cell line development. , Clonal cell ...
Breaking Biology Technology: