Navigation Links
Taking the gamble out of DNA sequencing

Two USC scientists have developed an algorithm that could help make DNA sequencing affordable enough for clinics and could be useful to researchers of all stripes.

Andrew Smith, a computational biologist at the USC Dornsife College of Letters, Arts and Sciences, developed the algorithm along with USC graduate student Timothy Daley to help predict the value of sequencing more DNA, to be published in Nature Methods on February 24.

Extracting information from the DNA means deciding how much to sequence: sequencing too little and you may not get the answers you are looking for, but sequence too much and you will waste both time and money. That expensive gamble is a big part of what keeps DNA sequencing out of the hands of clinicians. But not for long, according to Smith.

"It seems likely that some clinical applications of DNA sequencing will become routine in the next five to 10 years," Smith said. "For example, diagnostic sequencing to understand the properties of a tumor will be much more effective if the right mathematical methods are in place."

The beauty of Smith and Daley's algorithm, which predicts the size and composition of an unseen population based on a small sample, lies in its broad applicability.

"This is one of those great instances where a specific challenge in our research led us to uncover a powerful algorithm that has surprisingly broad applications," Smith said.

Think of it: how often do scientists need to predict what they haven't seen based on what they have? Public health officials could use the algorithm to estimate the population of HIV positive individuals; astronomers could use it to determine how many exoplanets exist in our galaxy based on the ones they have already discovered; and biologists could use it to estimate the diversity of antibodies in an individual.

The mathematical underpinnings of the algorithm rely on a model of sampling from ecology known as capture-recapture. In this model, individuals are captured and tagged so that a recapture of the same individual will be known and the number of times each individual was captured can be used to make inferences about the population as a whole.

In this way scientists can estimate, for example, the number of gorillas remaining in the wild. In DNA sequencing, the individuals are the various different genomic molecules in a sample. However, the mathematical models used for counting gorillas don't work on the scale of DNA sequencing.

"The basic model has been known for decades, but the way it has been used makes it highly unstable in most applications. We took a different approach that depends on lots of computing power and seems to work best in large-scale applications like modern DNA sequencing," Daley said.

Scientists faced a similar problem in the early days of the human genome sequencing project. A mathematical solution was provided by Michael Waterman of USC, in 1988, which found widespread use. Recent advances in sequencing technology, however, require thinking differently about the mathematical properties of DNA sequencing data.

"Huge data sets required a novel approach. I'm very please it was developed here at USC," said Waterman.


Contact: Robert Perkins
University of Southern California

Related biology news :

1. Taking the pulse of volcanoes using satellite images
2. Taking a hit or 2
3. Taking Americas rarest snake back to the woods
4. Young researcher taking fight against global killer to the next level in Vietnam
5. An invasive Asian fly is taking over European fruit
6. Seals gamble with their pups futures
7. Sequencing hundreds of chloroplast genomes now possible
8. Researchers develop tool to evaluate genome sequencing method
9. Genetic sequencing breakthrough to aid treatment for congenital hyperinsulinism
10. Gene sequencing project identifies abnormal gene that launches rare childhood leukemia
11. Duke Medicine news -- Genome sequencing of Burkitt Lymphoma reveals unique mutation
Post Your Comments:
(Date:4/28/2016)... 28, 2016 First quarter 2016:   ... compared with the first quarter of 2015 The gross ... M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... is unchanged, SEK 7,000-8,500 M. The operating margin for ...
(Date:4/15/2016)... -- Research and Markets has announced the ...  report to their offering.  ,      ... gait biometrics market is expected to grow at ... Gait analysis generates multiple variables such ... compute factors that are not or cannot be ...
(Date:3/29/2016)... BOCA RATON, Florida , March 29, 2016 /PRNewswire/ ... ("LegacyXChange" or the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect ... Synthetic DNA in ink used in a variety of ... preventing theft. Buyers of originally created collectibles from athletes ... authenticity through forensic analysis of the DNA. ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... A person commits a crime, and the detective ... the criminal down. An outbreak of foodborne illness ... (FDA) uses DNA evidence to track down the bacteria that ... It,s not. The FDA has increasingly used a complex, cutting-edge ... illnesses. Put as simply as possible, whole genome sequencing is ...
(Date:6/23/2016)... , June, 23, 2016  The Biodesign Challenge ... envision new ways to harness living systems and biotechnology, ... Art (MoMA) in New York City ... 130 participating students, showcased projects at MoMA,s Celeste Bartos ... Paola Antonelli , MoMA,s senior curator of architecture and ...
(Date:6/23/2016)... Durham, NC (PRWEB) , ... June 23, 2016 , ... ... Odense University Hospital in Denmark detail how a patient who developed lymphedema after being ... (fat) tissue. The results could change the paradigm for dealing with this debilitating, frequent ...
(Date:6/23/2016)... 2016 On Wednesday, June 22, 2016, ... 0.22%; the Dow Jones Industrial Average edged 0.27% lower to ... down 0.17%. has initiated coverage on the following equities: ... (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ... BIND ). Learn more about these stocks by accessing their ...
Breaking Biology Technology: