Navigation Links
TWIPS -- sonar inspired by dolphins
Date:11/17/2010

Scientists at the University of Southampton have developed a new kind of underwater sonar device that can detect objects through bubble clouds that would effectively blind standard sonar.

Just as ultrasound is used in medical imaging, conventional sonar 'sees' with sound. It uses differences between emitted sound pulses and their echoes to detect and identify targets. These include submerged structures such as reefs and wrecks, and objects, including submarines and fish shoals.

However, standard sonar does not cope well with bubble clouds resulting from breaking waves or other causes, which scatter sound and clutter the sonar image.

Professor Timothy Leighton of the University of Southampton's Institute of Sound and Vibration Research (ISVR), who led the research, explained:

"Cold War sonar was developed mainly for use in deep water where bubbles are not much of a problem, but many of today's applications involve shallow waters. Better detection and classification of targets in bubbly waters are key goals of shallow-water sonar."

Leighton and his colleagues have developed a new sonar concept called twin inverted pulse sonar (TWIPS). TWIPS exploits the way that bubbles pulsate in sound fields, which affects the characteristics of sonar echoes.

"To catch prey, some dolphins make bubble nets in which the best man-made sonar would not work. It occurred to me that either dolphins were blinding their sonar when making such nets, or else they have a better sonar system. There were no recordings of the type of sonar that dolphins use in bubble nets, so instead of producing a bio-inspired sonar by copying dolphin signals, I sat down and worked out what pulse I would use if I were a dolphin," said Leighton.

As its name suggests, TWIPS uses trains of twinned pairs of sound pulses. The first pulse of each pair has a waveform that is an inverted replica of that of its twin. The first pulse is emitted a fraction of a second before its inverted twin.

Leighton's team first showed theoretically that TWIPS might be able to enhance scatter from the target while simultaneously suppressing clutter from bubbles. In principle, it could therefore be used to distinguish echoes from bubble clouds and objects that would otherwise remain hidden.

In their latest study, the researchers set out to see whether TWIPS would work in practice. Using a large testing tank, they showed experimentally that TWIPS outperformed standard sonar at detecting a small steel disc under bubbly conditions resembling those found under oceanic breaking waves.

Encouraged by their findings, they next conducted trials at sea aboard the University of Southampton's coastal research vessel the RV Bill Conway. They compared the ability of TWIPS and standard sonar to discern the seabed in Southampton Water, which handles seven per cent of the UK's entire seaborne trade. The seabed in this area varies in depth between 10 and 20 metres.

"TWIPS outperformed standard sonar in the wake of large vessels such as passenger ferries," said co-author Dr Justin Dix of the University of Southampton's School of Ocean and Earth Science (SOES) based at the National Oceanography Centre, Southampton.

Possible future marine applications for TWIPS include harbour protection and the detection of bubbles in marine sediments and manufacturing. Technologies based on the same basic principles could be used in medical ultrasound imaging, which was already using pairs of inverted pulses to enhance (rather than suppress) contrast agents injected into the body. The TWIPS principle would work with other sensors such as in Magnetic resonance imaging (MRI), and Leighton has proposed TWIPR (Twin Inverted Pulse Radar) for the detection of improvised explosive devices or covert circuitry.

But what about the original inspiration for the research do dolphins and other echolocating animals use TWIPS?

"Key ingredients of a TWIPS system appear in separate species but they have never been found all together in a single species," said Leighton. "There is currently no evidence that dolphins use TWIPS processing, although no-one has yet taken recordings of the signals from animals hunting with bubble nets in the wild. How they successfully detect prey in bubbly water remains a mystery that we are working to solve. I have to pay credit to the team students Daniel Finfer and Gim-Hwa Chua of ISVR, and Paul White (ISVR) and Justin Dix of SOES. Our applications for funding this work were repeatedly turned down, and it took real grit and determination to keep going for the five years it took us to get this far."


'/>"/>

Contact: Dr. Rory Howlett
r.howlett@noc.soton.ac.uk
44-023-805-98490
National Oceanography Centre, Southampton (UK)
Source:Eurekalert

Related biology news :

1. University professor stresses links between US Navy sonar and whale strandings
2. Researchers equip robot sub with sensory system inspired by blind fish
3. Mussel-inspired glue for fetal membrane repair
4. Lotus-plant-inspired dust-busting shield to protect space gear
5. DOE funds bio-inspired solar fuel center at Arizona State
6. Harbor seals whiskers as good at detecting fish as echolocating dolphins
7. Dolphins use diplomacy in their communication
8. Satellites, DNA and dolphins
9. Rodeo bull goes head-to-head with zoo dolphins in a study of balance
10. Thrill-seeking holiday-makers are putting dolphins at risk
11. Thrill-seeking holidaymakers are putting dolphins at risk
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/3/2017)... 3, 2017 A new independent identity strategy ... LLP (IdSP) . Designed to fill a critical niche ... market, founding partners Mark Crego and ... just in identity expertise that span federal governments, the ... The Crego-Kephart combined expertise has a common theme born ...
(Date:1/31/2017)... 2017  Spero Therapeutics, LLC, a biopharmaceutical company ... of bacterial infections, today announced it has acquired ... Pro Bono Bio Ltd (PBB) to bolster its ... forms of Gram-negative bacteria.   The assets acquired have ... PBB group company. "The acquisition of ...
(Date:1/24/2017)... Jan. 24, 2017 Biopharm Reports has ... laboratory use of nuclear magnetic resonance spectroscopy (NMR). ... and profiled current practices, developments, trends and end-user ... as growth and opportunities. These areas include growth ... instruments, needs and innovation requirements, hyphenated NMR techniques, ...
Breaking Biology News(10 mins):
(Date:2/24/2017)... Feb. 23, 2017 China Biologic Products, Inc. (NASDAQ: ... plasma-based biopharmaceutical company in China, today announced its financial results ... Fourth Quarter 2016 Financial Highlights ... by 21.7% in RMB terms, or increased by 13.6% in ... same quarter of 2015. Gross profit increased ...
(Date:2/23/2017)... ... February 23, 2017 , ... ... Services portfolio to include an array of biochemical analyses critical for Lead ... to drive their hit-to-lead and SAR programs, including inhibitor potency and selectivity, mechanism ...
(Date:2/23/2017)... 23, 2017  Imanis Life Sciences announced today ... oncolytic vaccinia viruses for virotherapy research. These viruses ... Genelux,s proprietary, vaccinia virus-based technology platform for research ... into a partnership with Genelux to offer researchers, ... for use in research," said Dr. Kah ...
(Date:2/23/2017)... Winston-Salem, NC (PRWEB) , ... February 23, 2017 , ... ... pleased to announce a new partnership with Compass Research . GGI's mission is ... gifting a vaccine to a child in need in honor of each clinical trial ...
Breaking Biology Technology: