Navigation Links
Systems biology brings hope of speeding up drug development
Date:11/19/2008

Almost every day brings news of an apparent breakthrough against cancer, infectious diseases, or metabolic conditions like diabetes, but these rarely translate into effective therapies or drugs, and even if they do clinical development usually takes well over a decade. One reason is that medical research is conducted in highly fragmented groups focusing on specific pathways or components leading to drugs that turn out not to work properly or to have dangerous side effects after cycles of animal and then clinical testing in humans. This process is expensive and wasteful, resulting from the fact that at present researchers lack tools to assess in advance how candidate drugs work across the human's whole biological system. The discipline of systems biology represents an attempt to unite the medical research community behind a common approach to understanding and modelling the complex interactions of the human, leading to more effective and faster drug development.

Europe is now at the forefront of this growing movement that brings together a number of disciplines including mathematics, physics, statistics, bioinformatics, genetics and all the "omics" technologies dealing with genes, proteins, and biological pathways. Earlier this year leading specialists in systems biology met at an important conference organised jointly by the European Science Foundation and the University of Barcelona, providing a snapshot of current progress and a roadmap for future research.

The conference provided a platform to direct and accelerate other ongoing programmes in which the emerging tools of systems biology are being applied to specific areas of medicine, notably the SBMS (Systems Biology to combat Metabolic Syndrome) initiative. Metabolic syndrome is the term for various conditions that can lead to diseases such as type 2 diabetes where cells of the body develop resistance against insulin, impairing the regulation of blood glucose levels. The aim of SBMS is to understand the molecular and cellular systems that underlie risk factors associated with various diseases resulting from metabolic syndrome, by studying them at a systems wide level rather than focusing on individual specific components even when these appear to play a central role.

Yet the challenge of system biology as a whole is to integrate different components of the body at widely different scales of time and size, without being swamped by immense quantities of data, or computational models that are impossibly complex to handle, according to Roel van Driel, systems biology specialist at the University of Amsterdam, who was co-convenor of the ESF conference as well as head of the SBMS initiative. A big problem in medical research lies in duplication of effort and in particular creation of large sets of data that are difficult to share between projects, according to van Driel, who said that biology as a whole needed to become a big science, based on a stronger more analytical framework, more like physics. "The problem is not shortage of funding in medical research, but fragmentation into too many small projects," said van Driel. "We need a large-scale programme."

In fact biology has already had one large-scale programme involving focused collaboration between many projects across the world, the Human Genome Project of the 1990s. This led to a basic map of the genetic code common to all humans, although not of all the variations, or alleles, that give rise to individual differences. In fact the genome project yielded only limited information about the underlying genes and what they do, let alone how they are regulated and interact in different organs and metabolic pathways. That is the much greater challenge of systems biology, requiring the whole organism to be broken down into manageable systems that can be linked together to make predictions such as the effect of a particular candidate drug. These systems were discussed at the ESF conference, which also highlighted progress in the important related field of synthetic biology, involving engineering of organisms such as bacteria to create novel "systems" capable of manufacturing effective drugs.


'/>"/>

Contact: Roel van Driel
r.vandriel@uva.nl
31-205-255-150
European Science Foundation
Source:Eurekalert

Related biology news :

1. Systems Biology poised to revolutionize the understanding of cell function and disease
2. Cogent Systems and Northrop Grumman Reach Agreement to Settle Automated Fingerprint Identification Technology Suit and Create Strategic Alliance
3. Radiant Systems Selects BIO-key(R) Biometric Software for POS Solution
4. Fujitsu and HT Systems Partner to Provide Biometric Patient Identity Management
5. Fujitsu and HT Systems Partner to Provide Biometric Patient Identity Management
6. Radiant Systems Selects BIO-key(R) Biometric Software for POS Solution
7. Cogent Systems and Northrop Grumman Reach Agreement to Settle Automated Fingerprint Identification Technology Suit and Create Strategic Alliance
8. Smartcard Finger-Match Add-on for VeriFinger and MegaMatcher is Now Available for the Implementation of Biometric Fingerprint-on-Smartcard Verification Systems
9. Study shows genetically engineered corn could affect aquatic ecosystems
10. Genetically engineered corn may harm stream ecosystems
11. NYUs Center for Genomics & Systems Biology receives $4.4 million NSF grant
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/6/2017)... MATEO, Calif. , March 6, 2017 /PRNewswire/ ... marketing and sales technology, today announced Predictive Sales ... solution for infusing actionable sales intelligence into Salesforce. ... to automatically enable their sales organizations with deep ... messages that allow for intelligent engagement. Predictive Sales ...
(Date:3/2/2017)... LONDON , March 2, 2017 Summary ... require to better understand Merck KGaA and its partnering ... report: https://www.reportbuyer.com/product/3605601/ Description The Partnering Deals ... into the partnering activity of one of the world,s ... reports are prepared upon purchase to ensure inclusion of ...
(Date:3/2/2017)... , March 2, 2017 Australian stem ... (ASX: CYP), has signed an agreement with the ... the Monash Biomedicine Discovery Institute and Department of Pharmacology ... conduct a further preclinical study to support the use ... of asthma.  Asthma is a chronic, ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... Denmark , March 22, 2017  Ascendis ... utilizes its innovative TransCon technology to address significant ... financial results for the full year ended December ... significant year for our company as we broadened ... a leading, integrated rare disease company with an ...
(Date:3/22/2017)...   iSpecimen ®, the marketplace for ... Service (DPS), a full-service anatomic pathology reference lab ... States , has joined a program offered by ... (DHIN) to make human biospecimens and associated data available ... announced in 2015 as a collaboration between iSpecimen and ...
(Date:3/22/2017)... Mass. , March 22, 2017   Boston ... next-generation cancer therapeutics designed to target cancer stemness pathways, ... Patricia S. Andrews as Chief Executive Officer, effective ... succeed Chiang J. Li , M.D., FACP, who ... ten years ago. Under his leadership, Boston Biomedical has ...
(Date:3/22/2017)... ... March 21, 2017 , ... ... To acquire information on the desired increase and/or decrease in antibody-dependent cellular cytotoxicity ... rapid N-glycosylation profiling of therapeutic antibodies. , To meet this demand, the ...
Breaking Biology Technology: