Navigation Links
Syracuse University biologist discovers key regulators for biofilm development
Date:6/24/2011

They can be found everywhereorganized communities of bacteria sticking to surfaces both inside and outside the body. These biofilms are responsible for some of the most virulent, antibiotic-resistant infections in humans; however, scientific understanding of how these communities develop is lacking.

A recent study led by a Syracuse University biologist sheds new light on the process. The scientists discovered that a complex cascade of enhancer binding proteins (EBPs) is responsible for turning on genes that initiate the formation of a biofilm. The study was published June 13 in the Proceedings of the National Academy of Sciences, one of the world's most-cited multidisciplinary scientific serials. The National Science Foundation is funding the research (link to article: http://www.pnas.org/content/early/2011/06/07/1105876108.abstract?sid=dbfeeb94-6f1e-44c8-b610-d39a98acbd88).

"We've discovered a complex regulatory cascade of EBPs that is designed to be highly responsive to environmental signals," says Anthony Garza, associate professor of biology in SU's College of Arts and Sciences and corresponding author for the study. "The regulatory circuit we identified is very different from that which has previously been seen." Garza's research team includes scientists from the University of Miami School of Medicine, the University of Wisconsin-Madison, and Stanford University School of Medicine.

Garza's team discovered that the regulatory network that signals biofilm development is quite complex and akin to that which is normally found in higher organisms. "Bacterial cells that form biofilms require cooperative behavior similar to cells in more complex organisms," he says. "We knew EBPs were important in initiating biofilm development, and that there was a connection between EBPs and specific biofilm genes. But we didn't know how the EBP regulatory circuit was put together." Garza's team has also begun to identify the signals that activate the EBP circuitry and the corresponding biofilm genes. Those studies are forthcoming.

The work to uncover how biofilms are genetically initiated is key to developing new ways to prevent and/or treat infected surfaces, Garza says. Bacteria are stimulated to organize into biofilms by several mechanisms, including starvation, high nutrient levels, tissue recognition, and quorum or cell-density signaling. Because it takes a lot of energy to organize, bacteria need to be certain conditions are optimal before initiating the biofilm process.

For example, Garza explains, bacterial cells can recognize desirable host tissue, such as lung tissue. Once there, the cells look around to see if enough of their buddies are around to form a biofilm. In this case, both tissue recognition and quorum signaling is at work in initiating the process.

"Unfortunately, biofilms can be up to a thousand times more antibiotic resistant than free-living bacteria," Garza says. "Once established, biofilms are extremely resistant to killing agentschemicals, cleaners, antibiotics. The key to preventing their development is in understanding how they get started."


'/>"/>

Contact: Judy Holmes
jlholmes@syr.edu
315-443-8085
Syracuse University
Source:Eurekalert

Related biology news :

1. Syracuse University scientists discover new hitch to link nerve cell motors to their cargo
2. Syracuse University research team shapes cell behavior research
3. Syracuse University team develops functionally graded shape memory polymers
4. Falling in love more scientific than you think, according to Syracuse University professor
5. Syracuse University partners with Arden-Fox to advance DODs Net Zero Energy Initiative
6. Syracuse University researchers discover new way to attack some forms of leukemia
7. Guy Harvey Ocean Foundation funds University of Miamis R.J. Dunlap Program
8. Ben-Gurion University team presents environment movement report to Israels Knesset
9. Hong Kong University leads the genomics research of scarlet fever pathogen
10. Not-so-sweet potato from Clemson University, USDA resists pests, disease
11. University of Texas at Austin professor receives Donald L. Katz Award
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/22/2017)... , Feb. 22, 2017 With the ... ABI Research identifies four technologies that innovative and ... secure significant share in the changing competitive landscape: ... passive authentication.   "Companies can no ... to security," says Dimitrios Pavlakis , Industry ...
(Date:2/16/2017)... , Feb. 16, 2017  Genos, a community ... that it has received Laboratory Accreditation from the ... is presented to laboratories that meet stringent requirements ... scientifically rigorous processes. "Genos is committed ... laboratory practices. We,re honored to be receiving CAP ...
(Date:2/13/2017)... Feb. 13, 2017 Former 9/11 Commission border ... Committee, Janice Kephart of Identity Strategy Partners, ... Donald Trump,s "Executive Order: Protecting the Nation From ... 2017):  "As President Trump,s ,Travel Ban, Executive ... now essentially banned the travel ban, it is important ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... ... 2017 , ... AxioMed president, Jake Lubinski, describes the AxioMed ... deformed, which is identical to how the human discs work to distribute force. ... to its natural state along a hysteresis curve, exactly like a healthy human ...
(Date:3/23/2017)... , March 23, 2017  GlobeImmune, Inc. today announced ... the sale of 12,835,490 shares of its common stock ... of companies. In connection with the sale of its common ... cash and issue to GlobeImmune 200,000 shares, an estimated ... "We are pleased to enter into this ...
(Date:3/23/2017)... -- According to a report by Transparency Market Research ... to the presence of a large pool of participants; however, only ... and Sigma-Aldrich, compete with each other in this market. With Proliant ... 76% of this market in 2016.  ... As of now, a large number of vendors ...
(Date:3/22/2017)... ... March 22, 2017 , ... Researchers face a fundamental challenge ... to full-size tissues, bones, even whole organs to implant in people to treat ... deep into the developing tissue. , Current bioengineering techniques, including 3-D printing, ...
Breaking Biology Technology: