Navigation Links
Synthetic molecules emulate enzyme behavior for the first time
Date:7/2/2008

COLUMBUS, Ohio -- When chemists want to produce a lot of a substance -- such as a newly designed drug -- they often turn to catalysts, molecules that speed chemical reactions. Many jobs require highly specialized catalysts, and finding one in just the right shape to connect with certain molecules can be difficult. Natural catalysts, such as enzymes in the human body that help us digest food, get around this problem by shape-shifting to suit the task at hand.

Chemists have made little progress in getting synthetic molecules to mimic this shape shifting behavior -- until now.

Ohio State University chemists have created a synthetic catalyst that can fold its molecular structure into a specific shape for a specific job, similar to natural catalysts.

In laboratory tests, researchers were able to cause a synthetic catalyst -- an enzyme-like molecule that enables hydrogenation, a reaction used to transform fats in the food industry -- to fold itself into a specific shape, or into its mirror image.

The study appears in the June 25 issue of the Journal of the American Chemical Society.

Being able to quickly produce a catalyst of a particular shape would be a boon for the pharmaceutical and chemical industries, said Jonathan Parquette, professor of chemistry at Ohio State.

The nature of the fold in a molecule determines its shape and function, he explained. Natural catalysts reconfigure themselves over and over again in response to different chemical cues -- as enzymes do in the body, for example.

When scientists need a catalyst of a particular shape or function, they synthesize it through a process that involves a lot of trial and error.

"It's not uncommon to have to synthesize dozens of different catalysts before you get the shape you're looking for," Parquette said. "Probably the most important contribution this research makes is that it might give scientists a quick and easy way to get the catalyst that they want."

The catalyst in this study is just a prototype for all the other molecules that the chemists hope to make, said co-author and professor of chemistry T.V. RajanBabu.

"Eventually, we want to make catalysts for many other reactions using the fundamental principles we unearthed here," RajanBabu said.

For this study, Parquette, RajanBabu, and postdoctoral researcher Jianfeng Yu synthesized batches of a hydrogenation catalyst in the lab and coaxed the molecules to change shape.

The technique that the chemists developed amounts to nudging certain atoms on the periphery of the catalyst molecule in just the right way to initiate a change in shape. The change propagates to a key chemical bond in the middle of the molecule. That bond swings like a hinge, to initiate a twist in one particular direction that spreads throughout the rest of the molecule.

Parquette offered a concrete analogy for the effect.

"Think of the Radio City Rockettes dance line. The first Rockette kicks her leg in one direction, and the rest of them kick the same leg in the same direction -- all the way down the line. A change in shape that starts at one end of a molecule will propagate smoothly all the way to the other end."

In tests, the chemists caused the catalysts to twist one way or the other, either to form one chemical product or its mirror image. They confirmed the shape of the molecules at each step using techniques such as nuclear magnetic resonance spectroscopy.

That's what the Ohio State chemists find most exciting: the molecule does not maintain only one shape. Depending on its surroundings -- the chemical "nudges" that it receives on the outside -- it will adjust.

"For many chemical reactions to work, molecules must be able to fit a catalyst like a hand fits a glove," RajanBabu said. "Our synthetic molecules are special because they're flexible. It doesn't matter if the hand is a small hand or a big hand, the 'glove' will change its shape to fit it, as long as there is even a slight chemical preference for one of the hands. The 'flexible glove' will find a way to make a better fit, and so it will assist in specifically making one of the mirror image forms."

Despite decades of research, scientists aren't sure exactly how this kind of propagation works. It may have something to do with the polarity of different parts of the molecule, or the chemical environment around the edges of the molecule.

But Parquette says the new study demonstrates that propagation can be used to make synthetic catalysts change shape quickly and efficiently -- an idea that wasn't apparent before. The use of adaptable synthetic molecules may even speed the discovery of new catalysts.


'/>"/>

Contact: Jonathan Parquette
Parquette.1@osu.edu
614-292-5886
Ohio State University
Source:Eurekalert

Related biology news :

1. Chloroplast f and m Thioredoxins Discovered in Nonphotosynthetic Tissues
2. Synthetic compound promotes death of lung-cancer cells, tumors
3. Experts from Stevens, Merck, publish joint paper, Biosynthetic Studies of Platensimycin
4. Researchers decode genetics of rare photosynthetic bacteria
5. Researchers decode genetics of rare photosynthetic bacterium
6. Synthetic molecules may be less expensive alternative to therapeutic antibodies, researchers find
7. Berkeley researchers identify photosynthetic dimmer switch
8. Oregano oil works as well as synthetic insecticides to tackle common beetle pest
9. New projects to raise UK profile in synthetic biology
10. Synthetic Biology: funders move to address social and ethical challenges
11. Synthetic cocoa chemical slows growth of tumors in human cell lines
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/3/2016)... PUNE, India , February 3, 2016 ... to the new market research report "Automated Fingerprint Identification ... (Tenprint Search, Latent Search), Application (Banking & Finance, Government, ... 2020", published by MarketsandMarkets, the market is expected to ... estimated CAGR of 21.0% between 2015 and 2020. The ...
(Date:2/2/2016)... , Feb. 2, 2016  BioMEMS ... are primarily focused on medical screening and ... point-of-care parameters. Wearable devices that facilitate and ... freedom of movement are being bolstered through ... human biomedical signal acquisition coupled with wireless ...
(Date:2/2/2016)... NEW YORK , Feb. 2, 2016 Technology ... service presents an analysis of the digital and computed ... Malaysia , and Indonesia ... current trends and market size, as well as regional ... by country and discusses market penetration and market attractiveness, ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... 11, 2016 Non-profit Consortium Aims to ... to Support Research and Discovery --> ... an ambitious plan to sequence 100,000 individuals. It is intended ... at least 7 of North and East Asian countries. ... phase, the project will focus on creating phased reference genomes ...
(Date:2/11/2016)... Feb. 11, 2016  Spectra BioPharma Selling Solutions (Spectra) ... provides biopharma companies the experience, expertise, operational delivery ... outsourced sales teams. Created in concert with industry ... the strategic and tactical needs of its clients ... through both personal and non-personal promotion. ...
(Date:2/11/2016)... , Feb. 11, 2016   BioInformant ... report, "Stem Cell Research Products, Opportunities, Tools, and Technologies ... ... in the stem cell industry, BioInformant has more than ... the stem cell market, by stem cell type. This ...
(Date:2/10/2016)... Early-career researchers from ... , Uganda and Yemen ... nutrition   Indonesia , Nepal ... Yemen are being honored for their accomplishments in ... celebrated for mentoring young women scientists who are pursuing careers in agriculture, ...
Breaking Biology Technology: