Navigation Links
Synthetic biology: TUM researchers develop novel kind of fluorescent protein
Date:3/9/2011

This release is available in German.

Proteins are the most important functional biomolecules in nature with numerous applications in life science research, biotechnology and medicine. So how can they be modified in the most effective way to attain certain desired properties? In the past, the modifications were usually carried out either chemically or via genetic engineering. The team of Professor Arne Skerra from the TUM Chair of Biological Chemistry has now developed a more elegant combined solution: By extending the otherwise universal genetic code, the scientists are able to coerce bacterial cells to produce tailored proteins with synthetic functional groups. To put their idea to the test, they set out to crack a particularly hard nut: The scientists wanted to incorporate a non-natural amino acid at a specific site into a widely used natural protein.

In bioresearch this protein is commonly known as "GFP" (= green fluorescent protein). It emits a bright green glow and stems originally from a jellyfish that uses the protein to make itself visible in the darkness of the deep sea. The team chose a pale lavender coumarin pigment, serving as side chain of a non-natural amino acid, as the synthetic group. The scientists "fed" this artificial amino acid to a laboratory culture of Escherichia coli bacteria the microorganism workhorses of genetic engineering, whose natural siblings are also found in the human intestine. Since the team had transferred the modified genetic blueprints for the GFP to the bacteria including the necessary biosynthesis machinery it incorporated the coumarin amino acid at a very specific site into the fluorescent protein.

This spot in the GFP was carefully chosen, explains Professor Skerra: "We positioned the synthetic amino acid at a very close distance from the fluorescence center of the natural protein." The scientists employed the principle of the so-called Foerster resonance energy transfer, or FRET for short. Under favorable conditions, this process of physical energy transfer, named after the German physical chemist Theodor Foerster, allows energy to be conveyed from one stimulated pigment to another in a radiation-less manner.

It was precisely this FRET effect that the scientists implemented very elegantly in the new fluorescent protein. They defined the distance between the imported chemical pigment and the biological blue-green (cyan, to be more precise) pigment of the jellyfish protein in such a way that the interplay between the two dyes resulted in a completely novel kind of fluorescent chimeric biomolecule. Because of the extreme proximity of the two luminescent groups the pale lavender of the synthetic amino acid can no longer be detected; instead, the typical blue-green color of the fluorescent protein dominates. "What is special here, and different from the natural GFP, is that, thanks to the synthetically incorporated amino acid, the fluorescence can be excited with a commercially available black-light lamp in place of an expensive dedicated LASER apparatus," explains Sebastian Kuhn, who conducted these groundbreaking experiments as part of his doctoral thesis.

According to Skerra, the design principle of the novel bio-molecule, which is characterized by a particularly large and hard to achieve wavelength difference between excitation and emitted light, should open numerous interesting applications: "We have now demonstrated that the technology works. Our strategy will enable the preparation of customized fluorescent proteins in various colors for manifold future purposes." This research project was financially supported by the German Research Foundation (DFG) as part of the Excellence Cluster "Munich Center for Integrated Protein Science" (CIPS-M).


'/>"/>

Contact: Jana Bodicky
bodicky@zv.tum.de
49-816-171-5403
Technische Universitaet Muenchen
Source:Eurekalert

Related biology news :

1. Caltech engineers build firast-ever multi-input plug-and-play synthetic RNA device
2. Synthetic Biology: Coming Up Fast!
3. Biosynthetics production with detours
4. UNC scientists teach enzyme to make synthetic heparin in more varieties
5. Synthetic virus supports a bat origin for SARS
6. Synthetic biology: Is ethics a showstopper?
7. Synthetic biology key in the 21st century
8. Milestone achieved toward production of malaria treatment using synthetic biology and fermentation
9. Synthetic biology can help extend anti-malaria drug effectiveness
10. Orientation of antenna protein in photosynthetic bacteria described
11. Using combinatorial libraries to engineer genetic circuits advances synthetic biology
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/21/2016)... 2016 NuData Security announced today that Randy ... principal product architect and that Jon Cunningham ... development. Both will report directly to Christopher ... reflect NuData,s strategic growth in its product and ... demand and customer focus values. ...
(Date:6/16/2016)... FRANCISCO , June 16, 2016 ... size is expected to reach USD 1.83 ... by Grand View Research, Inc. Technological proliferation and ... banking applications are expected to drive the market ... ) , The development of advanced ...
(Date:6/9/2016)... attendance control systems is proud to announce the introduction of fingerprint attendance control software, ... employees are actually signing in, and to even control the opening of doors. ... ... ... Photo - http://photos.prnewswire.com/prnh/20160609/377487 ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 Houston Methodist ... the Cy-Fair Sports Association to serve as their ... agreement, Houston Methodist Willowbrook will provide sponsorship support, ... connectivity with association coaches, volunteers, athletes and families. ... the Cy-Fair Sports Association and to bring Houston ...
(Date:6/23/2016)... Calif. , June 23, 2016  The Prostate Cancer Foundation ... increasingly precise treatments and faster cures for prostate cancer. Members of the Class ... across 15 countries. Read More About the Class of ... ... ...
(Date:6/23/2016)... 2016   EpiBiome , a precision microbiome engineering ... debt financing from Silicon Valley Bank (SVB). The financing ... advance its drug development efforts, as well as purchase ... "SVB has been an incredible strategic partner to us ... bank would provide," said Dr. Aeron Tynes Hammack ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... STACS DNA ... Technical Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as a ... STACS DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further ...
Breaking Biology Technology: