Navigation Links
Symposium to look at genetic basis of exercise
Date:3/17/2009

BETHESDA, Md. (Mar. 18, 2009) 'Adaptation to exercise' is a familiar phenomenon, even if the phrase is not: A sedentary person takes up jogging and can barely make it around the block. After jogging regularly for a few weeks, the person can jog a mile, then two, then three. With regular exercise, the body adapts, becoming fitter and more efficient. The heart can pump more blood, delivering more oxygen to the muscles. The muscles get stronger, and so on.

There are individual differences in the ability to adapt to exercise. Some sedentary individuals who take up jogging will be able to run three miles after a short training period, while others will take much longer to get to the same level. What accounts for this difference in a person's ability to adapt to exercise? One important factor is our genes.

Research into the role genes play in exercise has been gaining steam over the past few decades and is the topic of a symposium at the Experimental Biology conference in New Orleans on April 20. Mark Olfert of the University of California at San Diego and Claude Bouchard of the Pennington Biomedical Research Center have organized the symposium, the Genetics of the Adaptation to Exercise. The American Physiological Society is sponsoring the symposium.

Speakers at the symposium will include Eric Hoffman of the Children's National Medical Center, Washington, D.C. and Tuomo Rankinen of the Pennington Biomedical Research Center. Dr. Hoffman will discuss Genetics and skeletal muscle adaptation to exercise, while Dr. Rankinen will talk on Genetics and the response to exercise in human populations. The symposium will also include presentation of selected abstracts.

Focus on individual genes

So far, scientists have identified about 200 genes that play a role in the body's ability to adapt to exercise. Although the research includes the term 'exercise' this work extends well beyond athletic performance. For example, it will lead to greater knowledge of how the muscles work, and to understanding muscle diseases such as muscular dystrophy.

Some of the research into the genetics of exercise has focused on individual genes. Dr. Olfert has looked at thrombospondin, a gene that limits the growth of small blood vessels, known as capillaries, in the muscles. Removing the gene allows greater capillary growth. The more capillaries in the muscle, the more oxygen the muscle will have available during exercise.

In one study, Olfert compared sedentary mice that did not have the thrombospondin gene in their skeletal muscle to mice that did have the gene. He found the mice without the thrombospondin, as expected, could exercise at a much greater capacity compared to the normal sedentary mice with the gene. What's more, the mice without thrombospondin could exercise at almost the same level as the mice with thrombospondin that exercised regularly.

Multi-gene approach

While this research is exciting, it has its limitations, Dr. Olfert said. Many genes play a role in exercise adaptation, most of these genes probably have a minor effect, and the way these genes work and interact with each other is quite complicated.

Dr. Bouchard has focused his research on gene patterns, using the power of computing to sift through thousands of genes. He has been involved with the Heritage Family Study, which began in 1992. In this program, family members undertake a standard exercise program while researchers measure changes in maximal oxygen uptake (a measure of aerobic fitness), blood pressure and glucose and insulin metabolism.

The researchers compared measures of adaptation to exercise on individuals within families and between families on a variety of measures, including maximum oxygen uptake. Because families share a similar genetic makeup, the research has helped uncover the role that genetics plays in exercise. For example, the researchers calculated that 25-50% of the variation in increase in maximum oxygen uptake was due to heredity.

They also found that one gene, the FHL-1 gene, played an important role in determining an individual's insulin sensitivity and glucose disposal ability in response to exercise. This gene, like other genes, comes in different variants. Individuals with one variant of this gene improved their insulin sensitivity and glucose disposal ability with exercise while people with another variant did not. This helps explain why some people who exercise are better at improving their glycemic level in the blood and avoiding diabetes, Dr. Bouchard said.

The research will have implications not just for those of us who are healthy, but for those of us whose genes make it hard to get the full benefits of exercise.


'/>"/>

Contact: Christine Guilfoy
cguilfoy@the-aps.org
301-634-7253
American Physiological Society
Source:Eurekalert

Related biology news :

1. Public Policy Center hosts flood symposium March 10-12
2. AAAS Symposium: Emerging threats to tropical, temperate and ocean ecosystems
3. Symposium at UH will address how to put sustainability into practice
4. Survival in a Changing World: The Journal of Experimental Biology 2009 symposium
5. Childrens National convenes first childhood obesity symposium
6. CTRC-AACR San Antonio Breast Cancer Symposium
7. The Camille & Henry Dreyfus Foundation to host important symposium on chemistry and the environment
8. Counter-terrorism symposium held at NJIT tomorrow
9. AVS 55th International Symposium & Exhibition, Oct. 19-24
10. Penn presents inaugural symposium on applied mathematics and computational science
11. Ansary Symposium on Stem Cell Research at Weill Cornell Medical College
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... 2, 2016   The Weather Company , an IBM ... an industry-first capability in which consumers will be able to ... ask questions via voice or text and receive relevant information ... Marketers have long sought an advertising solution that ... be personal, relevant and valuable; and can scale across millions ...
(Date:6/1/2016)... 1, 2016 Favorable Government Initiatives ... and Criminal Identification to Boost Global Biometrics System Market ... TechSci Research report, " Global Biometrics Market By ... and Opportunities, 2011 - 2021", the global biometrics market ... on account of growing security concerns across various end ...
(Date:5/20/2016)... -- VoiceIt is excited to announce its new marketing ... working together, VoiceIt and VoicePass will offer an ... slightly different approaches to voice biometrics, collaboration between ... Both companies ... "This marketing and technology partnership allows VoiceIt ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... ... on what they believe could be a new and helpful biomarker for malignant ... Click here to read it now. , Biomarkers are components in ...
(Date:6/27/2016)... 2016  Liquid Biotech USA ... a Sponsored Research Agreement with The University of ... from cancer patients.  The funding will be used ... with clinical outcomes in cancer patients undergoing a ... be employed to support the design of a ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of ... the Cary 5000 and the 6000i models are higher end machines that use the ... of the spectrophotometer’s light beam from the bottom of the cuvette holder. , ...
(Date:6/23/2016)...   Boston Biomedical , an industry leader ... target cancer stemness pathways, announced that its lead ... Designation from the U.S. Food and Drug Administration ... gastroesophageal junction (GEJ) cancer. Napabucasin is an orally ... stemness pathways by targeting STAT3, and is currently ...
Breaking Biology Technology: