Navigation Links
Sympathetic neurons 'cross talk' with pancreas cells during early development

The human body is a complicated system of blood vessels, nerves, organs, tissue and cells each with a specific job to do. When all are working together, it's a symphony of form and function as each instrument plays its intended roles.

Biologist Rejji Kuruvilla and her fellow researchers uncovered what happens when one instrument is not playing its part.

Kuruvilla along with graduate students Philip Borden and Jessica Houtz, both from the Biology Department at Johns Hopkins University's Krieger School of Arts and Sciences, and Dr. Steven Leach from the McKusick-Nathans Institute of Genetic Medicine at the Johns Hopkins School of Medicine, recently published a paper in the journal Cell Reports exploring whether "cross-talk" or reciprocal signaling, takes place between the neurons in the sympathetic nervous system and the tissues that the nerves connect to. In this case the targeted tissue called islets, were in the pancreas.

"We knew that sympathetic neurons need molecular signals from the tissues that they connect with, to grow and survive," said Kuruvilla. "What we did not know was whether the neurons would reciprocally signal to the target tissues to instruct them to grow and mature. It made sense to focus on the pancreas because of previous studies done in diabetic animal models where sympathetic nerves within the pancreas were found to retract early on in the disease, suggesting that dysfunction of the nerves could be an early trigger for pancreatic defects."

The researchers spent approximately three years working with lab mice to test the various scenarios in which signaling between sympathetic neurons and islet cells might take place. The experiments focused on what effects removing the sympathetic nerves would have on pancreas development in newborn mice.

Previous studies had shown that pancreatic cells release a signal of their own, a nerve growth protein, that directs the sympathetic nerves toward the pancreas and provides necessary nutrition to sustain the nerves.

In turn, Kuruvilla's team found that in mutant mice, the removal of the sympathetic neurons resulted in deformities in the architecture of the pancreatic islet cells and defects in insulin secretion and glucose metabolism.

Pancreatic islets are highly organized functional micro-organs with a defined size, shape and distinctive arrangement of endocrine cells. It's this marriage of form and function that result in cells clustered close together, that creates greater, more efficient islet cell function.

However, the mutant mice, with their sympathetic neurons removed, had islet formations that were misshapen, sported lesions and developed in a patchy, uneven manner. Because of their dysfunctional islet cell development, postnatal mice did not secrete enough insulin when confronted with high glucose, and had high blood glucose levels as a result. Increased levels of blood glucose in humans is a hallmark of diabetes.

It's known in neuroscience that the neurons in question from the sympathetic nervous system control the body's "flight or fight" response and communicate with connected tissues by releasing a chemical messenger called norepinephrine. The release of norepinephrine also plays an important role in the development and maturation of islets, said Kuruvilla.

Using sympathetic neurons and islet cells grown together in a culture dish, the researchers observed that islet cells move toward the nerves and identified norepinephrine as the nerve signal that causes the movement of the islet cells.

"Seeing how these islet cells were responding to sympathetic neurons both in a dish and the effects of removing the nerves in a whole animal on islet shape and functions were pretty remarkable," said Borden, lead author of the paper. "It was clear to us that sympathetic neurons were key to how islets were developing, something no one else had shown."

Kuruvilla said these studies, identifying sympathetic nerves as a critical player in organizing pancreatic cells during development and influencing their later function, could add to a better understanding of treating diabetes in the future. The research also lends support to the value in considering the importance of external factors such as nerves and blood vessels when transplanting islet cells for the treatment of diabetes in patients.

"This study reveals interactions between two co-developing systems, sympathetic neurons and pancreatic islet cells, that has important implications for peripheral organ development, and for regeneration of these tissues following injury or disease," said Kuruvilla.


Contact: Latarsha Gatlin
Johns Hopkins University

Related biology news :

1. Glycogen accumulation in neurons causes brain damage and shortens the lives of flies and mice
2. Astrocytes control the generation of new neurons from neural stem cells
3. Persistent sync for neurons
4. Neurons made from stem cells drive brain activity after transplantation in laboratory model
5. Stress-resilience/susceptibility traced to neurons in reward circuit
6. Neuronal activity induces tau release from healthy neurons
7. Age-related dementia may begin with neurons inability to dispose of unwanted proteins
8. Vitamin P as a potential approach for the treatment of damaged motor neurons
9. Serotonin mediates exercise-induced generation of new neurons
10. Down syndrome neurons grown from stem cells show signature problems
11. Weapons testing data determines brain makes new neurons into adulthood
Post Your Comments:
(Date:10/5/2015)... 5, 2015 ) ... NXT-ID, Inc. (NASDAQ: NXTD ), a biometric authentication ... --> ) releases the following ... NXTD ), a biometric authentication company focused on the ... Group ( ) releases the following ...
(Date:9/30/2015)... -- The global glucose monitoring device and diabetes management market is ... report on the industry from Kalorama Information. Sales in the traditional ... by continuous glucose monitoring and sensor segment, according to the ... products in its latest report, The Global Glucose Monitoring ... , ...
(Date:9/28/2015)... -- The global image sensors market ... by 2020, growing at a CAGR of 4.6% from ... (BSI) technique to improve picture quality are expected to ...      (Logo: , The light falls ... and, thus, reduce the noise interference and increase picture ...
Breaking Biology News(10 mins):
(Date:10/12/2015)... Calif. and BRUSSELS , Oct. ... (Euronext Brussels: UCB) today presented additional findings from an exploratory ... The findings were presented today in an oral plenary ... (ASBMR) 2015 Annual Meeting in Seattle . ... --> The small exploratory sub-study data showed ...
(Date:10/12/2015)... Oct. 12, 2015 This report covers the ... cell type, products, applications, end-user markets and geographic segmentation. ... The global cell expansion market generated revenue of ... reach revenues of $9.7 billion in 2015 and $22.0 ... (CAGR) of 17.8% from 2015 to 2020. This ...
(Date:10/12/2015)... ANNAPOLIS, Maryland , 12 de octubre de 2015 ... O. Matsui (D-CA) llegó a un récord en el ... tercera edición anual de la International Plasma Awareness Week ... octubre. La IPAW está patrocinada por la Plasma ... estando diseñada para: , Aumentar la ...
(Date:10/12/2015)... 12, 2015 LabStyle Innovations Corp. ... Solution, today announced its Medical Director, Dr. Moshe ... MobiHealth,s 5th EAI International Conference on Wireless Mobile ... innovations in mobile and wireless technologies," the conference will ... from October 14 - 16, 2015. The conference is ...
Breaking Biology Technology: