Navigation Links
Sweet corn study provides large-scale picture of better fields
Date:1/5/2010

URBANA In what amounted to a kind of census of sweet corn grown for processing, three years of data from 175 fields in Illinois, Wisconsin, and Minnesota shed light on what works and what doesn't. Along with identifying the most troublesome weeds, the results also revealed some of the more complicated relationships among factors influencing both weed control and sweet corn yield in the Midwest.

"Rather than a typical controlled field experiment, this was a large scale approach. We wanted to find out what some of the driving characteristics are on the regional level for sweet corn production," said University of Illinois and USDA Agricultural Research Service ecologist Marty Williams. "We contacted sweet corn processors in the Midwest. They supplied us with fields to study as well as a huge amount of information on the agronomic practices used in those fields, such as planting dates, tillage practices, and herbicide use."

From other sources Williams acquired environmental data for the fields, including temperature, rainfall, and latitude. In all, the study analyzed 20 environmental variables, 30 agronomic variables, and 56 weed species.

Identifying which weeds were most abundant was the easy part.

Just prior to harvest, Williams and his team walked the 175 fields and noted the weeds present. "Most of the fields had a number of species," Williams said. "On average, there were four to eight weed species in a field. Most the fields were dominated by a couple of species, but it wasn't the same dominant species from field to field."

The most abundant weed species they observed in the Midwest were fall panicum, giant foxtail, wild-proso millet, common lambsquarters, and velvetleaf. Williams added that each state had its own uniquely dominant weeds.

The next step, finding characteristics of the best and worst fields, was much more complicated. Williams was looking at not only sweet corn yield of the 175 fields, but also weed diversity, weed interference, and the weed's ability to propagate within the short window to crop harvest.

"We were able to identify the highest yielding fields as those that used interrow cultivation, a sweet corn hybrid that matured in less than 84 days, and were in the northern part of the production region," said Williams. "One break in latitude came near 42 degrees north and that's right about the border line between Illinois and Wisconsin. Fields further north also had lower weed interference and produced fewer weed seeds."

For those fields that didn't do as well, weed interference was the best indicator of yield loss. During the field visits, Williams and his team also predicted yield loss due to weeds. "Ultimately, over half of the fields in the Midwest had a level of weed interference sufficient to cause yield loss," Williams said.

Planting the weediest fields in June or July was one recommendation for more successful weed management that surfaced from the study. When the fields are cleaner, earlier planting is actually beneficial for crop growth.

Williams said that information gained from the regional study was consistent with some of the controlled research in experimental field studies they've done. "We've tested various planting dates and the crop tolerates common cornbelt weeds better in a June or July planting than it does in an April or May planting. Annual weeds that emerge and then are taken out when the soil is turned over for planting, you don't have to worry about again."

Another factor that played a major role was water supply. "We have no control over rainfall, of course, but we noticed that those conditions with poor water supply had bigger problems with weeds. Soil-active herbicides aren't nearly as effective when weed seedlings are emerging in dry soil. Likewise, drought conditions reduce effectiveness of postemergence herbicides."

One surprising observation from the data was that fields receiving the highest herbicide rates and most expense weed control programs had higher weed diversity, more weed interference, and produced the most weed seeds. Williams believes this may be the result of farmers applying more herbicides and at higher rates to the weediest fields, but with limited success.

The research team used a type of data analysis called Classification and Regression Trees (CART) to make sense of the enormous amount of data in the study. CART is more commonly used in social science experiments. The analysis looks for a single variable in the huge dataset which separates it into two distinct datasets, then four, then eight, like the branches of a tree. The analysis can also "prune" the tree back to something that's most meaningful, thus identifying the few variables most important to crop yield.

Although weeds are still a big problem for farmers, Williams noted that when this recent data was compared with weed surveys done some 50 years ago, "the overall weed density is an order of magnitude lower. Also, a lot of the current weeds weren't a major problem years ago, but then there are some like lambsquarters that are still pretty highly ranked. So there's been a little shuffling of the players, which we expect to continue."


'/>"/>

Contact: Debra Levey Larson
dlarson@illinois.edu
217-244-2880
University of Illinois at Urbana-Champaign
Source:Eurekalert

Related biology news :

1. Sweet corn story begins in UW-Madison lab
2. Cancers sweet tooth may be weakness
3. Recent news reports of sweetener reformulations raise questions about motivations
4. Purple sweet potato means increased amount of anti-cancer components
5. The bitter side of sweeteners
6. Quality and purity of popular stevia sweetener strengthened by new reference standards
7. Red pandas reveal an unexpected (artificial) sweet tooth
8. Liking sweets makes sense for kids
9. Spun-sugar fibers spawn sweet technique for nerve repair
10. New standard for popular stevia-based sweetener to assure products quality
11. Sweetened beverage consumption increases in the US
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/15/2016)... March 15, 2016 Yissum Research Development ... technology-transfer company of the Hebrew University, announced today the ... sensing technology of various human biological indicators. Neteera Technologies ... million from private investors. ... the detection of electromagnetic emissions from sweat ducts, enables ...
(Date:3/10/2016)... India , March 10, 2016 ... a new market research report "Identity and Access Management ... & Audit, Compliance, and Governance), by Organization Size, by ... to 2020", published by MarketsandMarkets, The market is estimated ... USD 12.78 Billion by 2020, at a Compound Annual ...
(Date:3/8/2016)... RALEIGH, N.C. , March 8, 2016 /PRNewswire/ ... biometric sensor technology, today announced it has secured ... led by GII Tech, a new venture fund ... LLC, with additional participation from existing investors TDF ... use the funds to continue its triple-digit growth ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... April 29, 2016 According ... Market Research "Separation Systems for Commercial Biotechnology Market ... and Forecast 2015 - 2023", the separation systems ... 10,665.5 Mn in 2014 and is projected to ... to 2023 to reach US$ 19,227.8 Mn in ...
(Date:4/28/2016)... 2016 The report "Cryocooler Market ... Service (Technical Support, Product Repairs & Refurbishment, Preventive Maintenance, ... to 2022", published by MarketsandMarkets, the global market is ... at a CAGR of 7.29% between 2016 and 2022. ... 94 Figures spread through 159 Pages and in-depth TOC ...
(Date:4/28/2016)... ... 28, 2016 , ... Morris Midwest ( http://www.morrismidwest.com ), a ... at its Maple Grove, Minnesota technical center, May 11-12. The event will ... Almost 20 leading suppliers of tooling, accessories, software and other related technology will ...
(Date:4/27/2016)... VANCOUVER, British Columbia , April 27, 2016 ... "Gesellschaft" oder "NanoStruck") (CSE: NSK) (OTCPink: NSKQB) ( ... sie im Anschluss an ihre Pressemitteilung vom 13. ... Inc. erhalten hat, ihre Finanzen um zusätzliche 200.000.000 ... auf 4.000.000 Kanadische Dollar zu bringen. Davon wurden ...
Breaking Biology Technology: