Navigation Links
Surprising findings on hydrogen production in green algae
Date:4/15/2013

New research results from Uppsala University, Sweden, instil hope of efficient hydrogen production with green algae being possible in the future, despite the prevailing scepticism based on previous research. The study, which is published today in the esteemed journal PNAS, changes the view on the ability of green algae which is good news.

The world must find a way of producing fuel from renewable energy sources to replace the fossil fuels. Hydrogen is today considered one of the most promising fuels for the future and if hydrogen can be produced directly from sunlight you have a renewable and environmentally friendly energy source.

One biological way of producing hydrogen from solar energy is using photosynthetic microorganisms. Photosynthesis splits water into hydrogen ions (H+) and electrons (e-). These can later be combined into hydrogen gas, (H2) with the use of special enzymes called hydrogenases. This occurs in cyanobacteria and green algae, which have the ability to use energy from the sun through photosynthesis and produce hydrogen through their own metabolism.

That green algae can produce hydrogen under certain conditions has been known and studied for about 15 years, but low efficiency has been a problem, i.e. the amount of energy absorbed by the algae that is transformed into hydrogen. One enzyme that has the ability to use sunlight to split water into electrons, hydrogen ions and oxygen is Photosystem II. Several studies have shown that some of the electrons from the enzyme are used to produce hydrogen gas under special conditions. But some have stated that most of the hydrogen gas gets its energy from other paths in the metabolism of the green algae. This would entail that it is not a matter of actual direct production of hydrogen from sunlight, and that green algae are no more efficient as energy crops than plants.

A group of researchers at Uppsala University, led by Senior Lecturer Fikret Mamedov and Professor Stenbjrn Styring, have now made a discovery that changes the view on hydrogen production from green algae. The researchers studied in detail how Photosystem II works in two different strains of the green algae Chlamydomonas reinhardtii. By measuring exactly how the amount and activity of Photosystem II varies under different conditions, and thereby affects hydrogen production, they found that a considerable amount of the energy absorbed by Photosystem II goes directly into hydrogen production.

"As much as 80 per cent of the electrons that the hydrogen-producing hydrogenases need come from Photosystem II, which is much more than previously believed. This means that most of the hydrogen production is driven directly by solar energy. The discovery gives us hope that it in the future will be possible to control the green algae so that the efficiency becomes significantly higher than it is today", says Professor Stenbjrn Styring.


'/>"/>

Contact: Stenbörn Styring
stenbjorn.styring@kemi.uu.se
46-018-471-6580
Uppsala University
Source:Eurekalert

Related biology news :

1. Scientists find surprising new influence on cancer genes
2. Computer modeling reveals how surprisingly potent hepatitis C drug works
3. New look at cell membrane reveals surprising organization
4. Climate changes effects on temperate rain forests surprisingly complex
5. Surprising teaching tool in K-12 science education -- Zebrafish research
6. Despite their thick skins, alligators and crocodiles are surprisingly touchy
7. Surprising demographic shifts in endangered monkey population challenge conservation expectations
8. Nuclear weapons surprising contribution to climate science
9. Seabirds study shows plastic pollution reaching surprising levels off coast of Pacific Northwest
10. First-of-its-kind study reveals surprising ecological effects of earthquake and tsunami
11. A surprising new kind of proton transfer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/19/2016)... DUBAI , UAE, April 20, 2016 ... can be implemented as a compact web-based "all-in-one" system ... in the biometric fingerprint reader or the door interface ... requirements of modern access control systems. The minimal dimensions ... the ID readers into the building installations offer considerable ...
(Date:3/31/2016)... , March 31, 2016 ... ) ("LegacyXChange" or the "Company") LegacyXChange is ... users of its soon to be launched online site ... https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential shareholders ... of DNA technology to an industry that is notorious ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 27, 2016 , ... Newly created 4Sight Medical Solutions ... the healthcare market. The company's primary focus is on new product introductions, to ... that are necessary to help companies efficiently bring their products to market. , ...
(Date:6/24/2016)... TOKYO , June 24, 2016  Regular discussions on ... to take place between the two entities said Poloz. ... in Ottawa , he pointed to the ... and the federal government. ... Poloz said, "Both institutions have common economic goals, why not ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a ... eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research ... by providing practical tips, tools, and strategies for clinical researchers. , “The landscape ...
(Date:6/23/2016)... A person commits a crime, and the detective ... the criminal down. An outbreak of foodborne illness ... (FDA) uses DNA evidence to track down the bacteria that ... It,s not. The FDA has increasingly used a complex, cutting-edge ... illnesses. Put as simply as possible, whole genome sequencing is ...
Breaking Biology Technology: