Navigation Links
Supportive materials will help regenerate heart tissue
Date:12/8/2009

Bioengineers from University of California, San Diego are developing new regenerative therapies for heart disease. The work could influence the way in which regenerative therapies for cardiovascular and other diseases are treated in the future.

New results from UC San Diego on using adult stem cells to regenerate heart tissue in environments that mimic a human post-heart-attack heart were presented this week in San Diego at the 2009 annual meeting of the American Society for Cell Biology (ASCB). The work is from the laboratory of Adam Engler from the Department of Bioengineering at the UC San Diego Jacobs School of Engineering.

Every year in the United States, approximately 900,000 people die from heart disease. The prevalence of heart disease has prompted researchers to develop new regenerative therapies to treat the condition, including the injection of adult stem cells into the scarred heart muscle that results from a heart attack. This treatment, called cellular cardiomyoplasty, relies on injected stem cells receiving appropriate cues from their surrounding tissue to cause them to become cardiac muscle.

However, when stem cells are injected into stiff, scarred, post-heart attack muscle (rather than healthy tissue), these stem cells do not readily become cardiac muscle. In fact, only marginal improvement in overall cardiac function has been detected, and this improvement may not actually be from tissue regeneration. Instead, the improvements may be from the fact that the treatment "pokes holes" into the scar tissue and injects soft cells, making it slightly softer and thus more functional. Even more striking, the injected stem cells do not form new cardiac muscle. Instead, the stem cells form small calcified lesions. The injected stem cells are directed by the stiff scar tissue to mature into bone-like cells rather than new heart cells.

Given these problems associated with direct stem cell injection, the UC San Diego bioengineers are proposing to use cells placed in a supportive material that changes stiffness with time by exhibiting time-dependent crosslinking.

"Our evidence suggests that tissue-specific stiffness arises from key developmental changes, which implies that cells should be cultured in the appropriate physical conditions that mimic embryonic tissue progression, from soft, pre-cardiac tissue at early embryonic age to a mature, less compliant tissue at the conclusion of development," said Jennifer Young, a Ph.D. candidate in bioengineering at UC San Diego and the first author on the peer-reviewed presentation at ASCB 2009.

By tuning this material to mimic in situ time-dependent stiffness changes, the UC San Diego bioengineers have found that cells placed in this material indicate improved cardiac differentiation.

"Results from this study may not only have a profound impact on cardiovascular engineering, but may influence the way in which many regenerative therapies are conducted. In this instance we have studied the developing tissue as a model, and from it generated a set of design criteria to mimic in our new material," said bioengineering professor Adam Engler from the UC San Diego Jacobs School of Engineering.


'/>"/>

Contact: Daniel Kane
dbkane@ucsd.edu
858-534-3262
University of California - San Diego
Source:Eurekalert

Related biology news :

1. Keck Foundation funds study of biological interactions with nanomaterials
2. Scientists discover record-breaking hydrogen storage materials for use in fuel cells
3. Purdue researchers obtain a snapshot clarifying how materials enter cells
4. Sea cliff erosion, hemp construction materials and more at UCSD Engineering Conference
5. Lensless camera uses X-rays to view nanoscale materials and biological specimens
6. Making sure the wonder materials dont become the wonder pollutant
7. Fast AFM probes measure multiple properties of biomolecules or materials simultaneously
8. Findings a step toward making new optical materials
9. New 3-D test method for biomaterials flat out faster
10. Research measures movement of nanomaterials in simple model food chain
11. Growing use of nanomaterials spurs research to investigate possible downsides
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/23/2017)... the first robotic gym for the rehabilitation and functional motor sense evaluation ... Genoa, Italy . The first 30 robots will be available from ... . The technology was developed and patented at the IIT laboratories ... Technology thanks to a 10 million euro investment from entrepreneur Sergio Dompè. ... ...
(Date:4/19/2017)... York , April 19, 2017 ... as its vendor landscape is marked by the presence ... market is however held by five major players - ... Together these companies accounted for nearly 61% of the ... the leading companies in the global military biometrics market ...
(Date:4/11/2017)... Fla. , April 11, 2017 ... and secure authentication solutions, today announced that it ... Intelligence Advanced Research Projects Activity (IARPA) to develop ... Thor program. "Innovation has been a ... IARPA,s Thor program will allow us to innovate ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... 12, 2017 , ... The Blavatnik Family Foundation and the ... of the 2017 Blavatnik Regional Awards for Young Scientists. Established in 2007, ... the New York Academy of Sciences to honor the excellence of outstanding postdoctoral ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... genomics analysis platform specifically designed for life science researchers to analyze and ... researcher Rosalind Franklin, who made a major contribution to the discovery of ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... announced today it will be hosting a Webinar titled, “Pathology is going digital. ... Associates , on digital pathology adoption best practices and how Proscia improves lab ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today ... designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) ... able to cross the cell membrane and bind intracellular STAT3 and inhibit its ...
Breaking Biology Technology: