Navigation Links
Superbright and fast X-rays image single layer of proteins

RICHLAND, Wash. -- In biology, a protein's shape is key to understanding how it causes disease or toxicity. Researchers who use X-rays to takes snapshots of proteins need a billion copies of the same protein stacked and packed into a neat crystal. Now, scientists using exceptionally bright and fast X-rays can take a picture that rivals conventional methods with a sheet of proteins just one protein molecule thick.

Using a type of laser known as XFEL, the technique opens the door to learning the structural details of almost 25 percent of known proteins, many of which have been overlooked due to their inability to stack properly. The team of researchers led by the Department of Energy's Pacific Northwest and Lawrence Livermore National Laboratories report their results with this unique form of X-ray diffraction in the March issue of the International Union of Crystallography Journal.

"In this paper, we're proving it's possible to use an XFEL to study individual monolayers of protein," said PNNL microscopist James Evans. "Just being able to see any diffraction is brand new."

Evans co-led the team of two dozen scientists with LLNL physicist Matthias Frank. The bright, fast X-rays were produced at the Linac Coherent Light Source at SLAC National Accelerator Laboratory in Menlo Park, Calif., the newest of DOE's major X-ray light source facilities at the U.S. National Laboratories. LCLS, currently the world's most powerful X-ray laser, is an X-ray free-electron laser. It produces beams millions of times brighter than earlier X-ray light sources.

Coming in at around 8 angstrom resolution (which can make out items a thousand times smaller than the width of a hair), the proteins appears slightly blurry but match the expected view based on previous research. Evans said this level of clarity would allow researchers, in some cases, to see how proteins change their shape as they interact with other proteins or molecules in their environment.

To get a clearer view of protein monolayers using XFEL, the team will need to improve the resolution to 1 to 3 angstroms, as well as take images of the proteins at angles, efforts that are currently underway.

Not Your Family's Crystal

Researchers have been using X-ray crystallography for more than 60 years to determine the shape and form of proteins that form the widgets and gears of a living organism's cells. The conventional method requires, however, that proteins stack into a large crystal, similar to how oranges stack in a crate. The structure of more than 80,000 proteins have been determined this way, leading to breakthroughs in understanding of diseases, pathogens, and how organisms grow and develop.

But many proteins found in nature do not stack easily. Some jut from the fatty membranes that cover cells, detecting and interacting with other cells and objects, such as viruses or bacteria, in the surrounding area. These proteins are not used to having others of their kind stack on top. These so-called membrane proteins make up about 25 percent of all proteins, but only 2 percent of proteins that researchers have determined structures for.

Wafer Thin

Researchers in the last decade have been pursuing the idea that one sheet of proteins could be visualized if the X-rays were bright enough and flashed on and off quickly enough to limit the damage. Two years ago, scientists demonstrated they could use XFEL technology on crystals of proteins about 15 to 20 sheets thick.

Evans, Frank and their team wanted to push this further. The team worked on a way to create one-sheet-thick crystals of two different proteins -- a protein called streptavidin and a membrane protein called bacteriodopsin. The structures of both proteins are well-known to scientists, which gave the team something to compare their results to.

The team shined the super-bright X-rays for a brief moment -- about 30 femtoseconds, a few million billionths of a second -- on the protein crystals. They created so much data in the process that it took them more than a year to analyze all of it.

The resulting images look like the known structures, validating this method. Next, the researchers will try to capture proteins changing shape as they engage in a chemical reaction. For this, even shorter flashes of X-rays might be needed to see the action clearly.

If successful, shorter flashes of XFEL might mean longer lines at SLAC.


Contact: Mary Beckman
DOE/Pacific Northwest National Laboratory

Related biology news :

1. X-rays reveal uptake of nanoparticles by soya bean crops
2. Scientists reassemble the backbone of life with a particle acceleratorynchrotron X-rays
3. X-rays reveal the self-defence mechanisms of bacteria
4. Dental X-rays linked to common brain tumor
5. Graphene sandwich improves images of biomolecules
6. Capturing ultrasharp images of multiple cell components at once
7. Image or reality? Leaf research needs photos and lab analysis
8. Scientists uncover image of muscular dystrophy defect & design targeted drug candidates
9. ASU researchers develop new device to help image key proteins at room temperature
10. Neurons subtract images and use the differences
11. Aware Supplies Saudi Arabia with Biometrics Software to Help Facilitate Pilgrimage Travel
Post Your Comments:
Related Image:
Superbright and fast X-rays image single layer of proteins
(Date:11/9/2015)... JOSE, Calif. , Nov. 9, 2015  Synaptics ... human interface solutions, today announced broader entry into the ... vehicle-specific solutions that match the pace of consumer electronics ... and biometric sensors are ideal for the automotive industry ... vehicle. Europe , ...
(Date:10/29/2015)... --  MedNet Solutions , an innovative SaaS-based eClinical technology ... is pleased to announce that it has been selected ... of only three finalists for a 2015 Tekne ... category. The Tekne Awards honor Minnesota ... and leadership. iMedNet™ eClinical  technology ...
(Date:10/29/2015)... Mich. , Oct. 29, 2015  Rubicon ... Genomics for U.S. distribution of its DNA library ... kit and Rubicon,s new ThruPLEX Plasma-seq kit. ThruPLEX ... enable the preparation of NGS libraries for liquid ... for diagnostic and prognostic applications in cancer and ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... --> --> ... Synthesis Market by Product & Services (Primer, Probe, Custom ... RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - ... is expected to reach USD 1,918.6 Million by 2020 ... of 10.1% during the forecast period. Browse ...
(Date:11/24/2015)... ... 2015 , ... The Academy of Model Aeronautics (AMA), led by its Executive ... Multirotor Grand Prix, to represent the First–Person View (FPV) racing community. , FPV racing ... this type of racing and several new model aviation pilots have joined the community ...
(Date:11/24/2015)... November 24, 2015 --> ... research report released by Transparency Market Research, the global ... a CAGR of 17.5% during the period between 2014 ... - Global Industry Analysis, Size, Volume, Share, Growth, Trends ... prenatal testing market to reach a valuation of US$2.38 ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... today that the remaining 11,000 post-share consolidation (or ... Warrants (the "Series B Warrants") subject to the ... on November 23, 2015, which will result in ... giving effect to the issuance of such shares, ...
Breaking Biology Technology: