Navigation Links
Superbright and fast X-rays image single layer of proteins
Date:2/14/2014

RICHLAND, Wash. -- In biology, a protein's shape is key to understanding how it causes disease or toxicity. Researchers who use X-rays to takes snapshots of proteins need a billion copies of the same protein stacked and packed into a neat crystal. Now, scientists using exceptionally bright and fast X-rays can take a picture that rivals conventional methods with a sheet of proteins just one protein molecule thick.

Using a type of laser known as XFEL, the technique opens the door to learning the structural details of almost 25 percent of known proteins, many of which have been overlooked due to their inability to stack properly. The team of researchers led by the Department of Energy's Pacific Northwest and Lawrence Livermore National Laboratories report their results with this unique form of X-ray diffraction in the March issue of the International Union of Crystallography Journal.

"In this paper, we're proving it's possible to use an XFEL to study individual monolayers of protein," said PNNL microscopist James Evans. "Just being able to see any diffraction is brand new."

Evans co-led the team of two dozen scientists with LLNL physicist Matthias Frank. The bright, fast X-rays were produced at the Linac Coherent Light Source at SLAC National Accelerator Laboratory in Menlo Park, Calif., the newest of DOE's major X-ray light source facilities at the U.S. National Laboratories. LCLS, currently the world's most powerful X-ray laser, is an X-ray free-electron laser. It produces beams millions of times brighter than earlier X-ray light sources.

Coming in at around 8 angstrom resolution (which can make out items a thousand times smaller than the width of a hair), the proteins appears slightly blurry but match the expected view based on previous research. Evans said this level of clarity would allow researchers, in some cases, to see how proteins change their shape as they interact with other proteins or molecules in their environment.

To get a clearer view of protein monolayers using XFEL, the team will need to improve the resolution to 1 to 3 angstroms, as well as take images of the proteins at angles, efforts that are currently underway.

Not Your Family's Crystal

Researchers have been using X-ray crystallography for more than 60 years to determine the shape and form of proteins that form the widgets and gears of a living organism's cells. The conventional method requires, however, that proteins stack into a large crystal, similar to how oranges stack in a crate. The structure of more than 80,000 proteins have been determined this way, leading to breakthroughs in understanding of diseases, pathogens, and how organisms grow and develop.

But many proteins found in nature do not stack easily. Some jut from the fatty membranes that cover cells, detecting and interacting with other cells and objects, such as viruses or bacteria, in the surrounding area. These proteins are not used to having others of their kind stack on top. These so-called membrane proteins make up about 25 percent of all proteins, but only 2 percent of proteins that researchers have determined structures for.

Wafer Thin

Researchers in the last decade have been pursuing the idea that one sheet of proteins could be visualized if the X-rays were bright enough and flashed on and off quickly enough to limit the damage. Two years ago, scientists demonstrated they could use XFEL technology on crystals of proteins about 15 to 20 sheets thick.

Evans, Frank and their team wanted to push this further. The team worked on a way to create one-sheet-thick crystals of two different proteins -- a protein called streptavidin and a membrane protein called bacteriodopsin. The structures of both proteins are well-known to scientists, which gave the team something to compare their results to.

The team shined the super-bright X-rays for a brief moment -- about 30 femtoseconds, a few million billionths of a second -- on the protein crystals. They created so much data in the process that it took them more than a year to analyze all of it.

The resulting images look like the known structures, validating this method. Next, the researchers will try to capture proteins changing shape as they engage in a chemical reaction. For this, even shorter flashes of X-rays might be needed to see the action clearly.

If successful, shorter flashes of XFEL might mean longer lines at SLAC.


'/>"/>

Contact: Mary Beckman
mary.beckman@pnnl.gov
509-375-3688
DOE/Pacific Northwest National Laboratory
Source:Eurekalert  

Related biology news :

1. X-rays reveal uptake of nanoparticles by soya bean crops
2. Scientists reassemble the backbone of life with a particle acceleratorynchrotron X-rays
3. X-rays reveal the self-defence mechanisms of bacteria
4. Dental X-rays linked to common brain tumor
5. Graphene sandwich improves images of biomolecules
6. Capturing ultrasharp images of multiple cell components at once
7. Image or reality? Leaf research needs photos and lab analysis
8. Scientists uncover image of muscular dystrophy defect & design targeted drug candidates
9. ASU researchers develop new device to help image key proteins at room temperature
10. Neurons subtract images and use the differences
11. Aware Supplies Saudi Arabia with Biometrics Software to Help Facilitate Pilgrimage Travel
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Superbright and fast X-rays image single layer of proteins
(Date:6/20/2016)... -- Securus Technologies, a leading provider of civil ... investigation, corrections and monitoring announced that after exhaustive ... the final acceptance by all three (3) Department ... (MAS) installed. Furthermore, Securus will have contracts for ... October, 2016. MAS distinguishes between legitimate wireless device ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. ... a business relationship that includes integrating Syngrafii,s patented ... branch project. This collaboration will result in greater ... the credit union, while maintaining existing document workflow ... http://photos.prnewswire.com/prnh/20160606/375871LOGO ...
(Date:6/1/2016)... Favorable Government Initiatives Coupled With ... Identification to Boost Global Biometrics System Market Through 2021  ... report, " Global Biometrics Market By Type, By ... 2011 - 2021", the global biometrics market is projected ... of growing security concerns across various end use sectors ...
Breaking Biology News(10 mins):
(Date:6/22/2016)... 22, 2016 Cell Applications, Inc. and ... to produce up to one billion human induced ... one week. These high-quality, consistent stem cells enable ... and spend more time doing meaningful, relevant research. ... high-volume manufacturing process that produces affordable, reliable HiPSC ...
(Date:6/22/2016)... June 22, 2016  According to Kalorama Information, ... sequencing (NGS) market include significant efforts in automation ... More accessible and affordable sequencers, say the healthcare ... for consumables including sample prep materials.  The healthcare ... Sample Preparation for Next Generation Sequencing (NGS) , ...
(Date:6/22/2016)... PA (PRWEB) , ... June 22, 2016 , ... ... University City Science Center’s Port business incubator and current participant in the Phase ... and treatment for cancer patients. , Quantitative Radiology Solutions helps physicians make ...
(Date:6/22/2016)... ... June 21, 2016 , ... New light-based technologies that facilitate a ... — promise to enable both compact, wearable devices for point-of-care diagnostics as well as ... skin. , Recent work and visionary future directions are detailed in a new open-access ...
Breaking Biology Technology: