Navigation Links
Successful strategy developed to regenerate blood vessels
Date:4/17/2011

Researchers at The University of Western Ontario have discovered a strategy for stimulating the formation of highly functional new blood vessels in tissues that are starved of oxygen. Dr. Geoffrey Pickering and Matthew Frontini at the Schulich School of Medicine & Dentistry developed a strategy in which a biological factor, called fibroblast growth factor 9 (FGF9), is delivered at the same time that the body is making its own effort at forming new blood vessels in vulnerable or damaged tissue. The result is that an otherwise unsuccessful attempt at regenerating a blood supply becomes a successful one. Their findings are published online in Nature Biotechnology.

"Heart attacks and strokes are leading causes of death and disability among Canadians. Coronary bypass surgery and stenting are important treatments but are not suitable for many individuals," explains Dr. Pickering, a professor of Medicine (Cardiology), Biochemistry, and Medical Biophysics, and a scientist at the Robarts Research Institute. "Because of this, there has been considerable interest in recent years in developing biological strategies that promote the regeneration of a patient's own blood vessels."

This potential treatment has been termed 'therapeutic angiogenesis'. "Unfortunately and despite considerable investigation, therapeutic angiogenesis has not as yet been found to be beneficial to patients with coronary artery disease. It appears that new blood vessels that form using approaches to date do not last long, and may not have the ability to control the flow of blood into the areas starved of oxygen."

The work of Dr. Pickering and collaborators provides a method to overcome these limitations. This strategy is based on paying more attention to the "supporting" cells of the vessel wall, rather than the endothelial or lining cells of the artery wall. The research team found that by activating the supporting cells, new blood vessel sprouts in adult mice did not shrivel up and disappear but instead lasted for over a year. Furthermore, these regenerating blood vessels were now enveloped by smooth muscle cells that gave them the ability to constrict and relax, a critical process that ensures the right amount of blood and oxygen gets to the tissues.

"FGF9 seemed to 'awaken' the supporting cells and stimulated their wrapping around the otherwise fragile blood vessel wall" said Frontini, the first author of the manuscript. "The idea of promoting the supporting cellular actors rather than the leading actors opens new ways of thinking about vascular regeneration and new possibilities for treating patients with vascular disease."


'/>"/>

Contact: Kathy Wallis
kwallis3@uwo.ca
519-661-2111 x81136
University of Western Ontario
Source:Eurekalert

Related biology news :

1. LSUHSC reports first successful salivary stone removal with robotics
2. Successful mothers get help from their friends: Dolphin study
3. Almac has Successful MHRA Inspection at its Clinical Services UK Site
4. University of Nevada, Reno, demonstrates successful sludge-to-power research
5. University of Nevada, Reno demonstrates successful sludge-to-power research
6. New method successfully predicted how oil from Deepwater Horizon spill would spread
7. School-based intervention successfully lowers drinking rates in at risk children
8. Scientists successfully use human induced pluripotent stem cells to treat Parkinsons in rodents
9. Pitt researcher says simple polymer-based filter successfully cleans water, recovers oil in Gulf of Mexico tests
10. Polymer-based filter successfully cleans water, recovers oil in Gulf of Mexico test
11. Cell Transplantation reports consistent and successful islet isolations offer diabetes hope
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/3/2016)... June 3, 2016 ... Nepal hat ein ... hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und ... der Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche ... im Januar teilgenommen, aber Decatur wurde als ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of the medical ... premium product recently added to the range of products distributed by Ampronix. ... ... ... Ampronix News ...
(Date:5/3/2016)... Lithuania , May 3, 2016  Neurotechnology, ... released the MegaMatcher Automated Biometric Identification System ... of large-scale multi-biometric projects. MegaMatcher ABIS can process ... accuracy using any combination of fingerprint, face or ... MegaMatcher SDK and MegaMatcher Accelerator ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical journal articles ... findings are the subject of a new article on the Surviving Mesothelioma website. ... blood, lung fluid or tissue of mesothelioma patients that can help point doctors to ...
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
(Date:6/23/2016)... June 23, 2016 Houston Methodist Willowbrook ... Cy-Fair Sports Association to serve as their official ... Houston Methodist Willowbrook will provide sponsorship support, athletic ... with association coaches, volunteers, athletes and families. ... Cy-Fair Sports Association and to bring Houston Methodist ...
(Date:6/23/2016)... NEW YORK , June, 23, 2016  The ... students to envision new ways to harness living systems ... of Modern Art (MoMA) in New York ... more than 130 participating students, showcased projects at MoMA,s ... included Paola Antonelli , MoMA,s senior curator of ...
Breaking Biology Technology: