Navigation Links
Studying muscle function to advance treatment of heart failure
Date:8/6/2014

AMHERST, Mass. Muscle physiologist Edward Debold at the University of Massachusetts Amherst's School of Public Health and Health Sciences recently received a three-year, $198,000 grant from the American Heart Association to support studies to uncover the molecular mechanisms of skeletal muscle fatigue.

The work will advance basic understanding of muscle function and should lead to new drug therapies for individuals with fatigue that greatly limits physical function and quality of life, including the 5.7 million Americans living with chronic heart failure.

Medical researchers and physiologists believed for a long time that heart failure, a syndrome or collection of symptoms, involved only cardiac muscle, Debold points out. But in the late 1980s, they were surprised to find that function of skeletal muscle is also compromised and is much more susceptible to fatigue, he explains. "So for affected individuals the simplest tasks around the house become extremely arduous." It makes sense to study the basis of skeletal muscle function, he adds, "because if we can reduce the fatigue, we could enable them to live independently longer and increase activity levels, which can improve their long-term prognosis."

Muscle fatigue of this type is like a car engine with a bad exhaust system, unable to get rid of waste products, the physiologist says. By-products of metabolism build up inside the muscle cells and inhibit its ability to contract. "Our understanding of muscle fatigue is currently limited by our inability to directly observe this process at the molecular level," Debold says. "The really exciting aspect of this project is that it will overcome this limitation by using the latest technologies to directly visualize and characterize the process of muscle fatigue at the single-molecule level."

He and colleagues are experts in the use of a single molecule laser trap assay, which enables them to directly observe the nanoscale motions of myosin, the protein that makes muscles contract.

Debold, who built the laser trap assay at UMass Amherst, says, "We're one of only a handful of in the world labs who have an instrument capable of making these measurements. The techniques are new, so no one has addressed the mechanisms of muscle fatigue in quite this way, using the laser trap assay. It should help us to figure out why a muscle stops working during fatigue."

To do these experiments the lab initially isolates the 20-nanometer size muscle protein myosin (one million times smaller than a millimeter) from skeletal muscle tissue. They will then mimic the conditions of fatigue in a test tube and directly observe the impact on myosin's ability to generate force and motion.

One of the basic ideas to be tested is how and why the presence of metabolites act to slow the velocity of contraction in fatigued muscles. A second aim is to understand how these same metabolites disrupt the regulation of muscle contraction, specifically why a separate set of muscle proteins, tropomyosin and troponin, become less sensitive to their molecular trigger calcium.

Debold explains, "We believe this process is disrupted during fatigue and muscles become less sensitive to calcium, the ion released in muscle cells in response to stimulation from a nerve. This means that even though your brain is telling the muscle to contract strongly, you get less force because the muscle doesn't respond as well to the signal from the brain."

In a later phase of the project, Debold and his colleagues will partner with pharmaceutical companies to begin to translate their new knowledge about muscle fatigue by testing several drugs that target the contractile proteins myosin and troponin to enhance their function under fatigue like conditions. This represents a crucial first step in the translation of this knowledge from the lab bench to the patient's bedside.

This is a highly collaborative project that also involves labs at Penn State Medical Center where Chris Yengo, an expert in myosin structure and function, will analyze the impact of the fatiguing metabolites on the "clock-like" internal motions in the myosin molecule. In addition, Jonathan Davis at Ohio State University, an expert in muscle regulatory protein structure and function, will help the Debold lab identify the structures and processes in troponin that cause muscle to be less responsive to activation during fatigue.


'/>"/>

Contact: Janet Lathrop
jlathrop@admin.umass.edu
413-545-0444
University of Massachusetts at Amherst
Source:Eurekalert  

Related biology news :

1. Studying impacts of indoor air pollution on tribal communities
2. Studying estrogens made by the brain may offer new insights in learning and memory
3. UT Southwestern ob/gyn researchers studying genetic factors in premature births
4. Penn biologists establish new method for studying RNAs regulatory footprint
5. Frontiers in Agricultural Sustainability: Studying the Protein Supply Chain
6. Understanding ourselves by studying the animal kingdom
7. University of Maryland researchers studying vaccine to prevent potential bird flu pandemic
8. Mount Sinai researchers develop first successful laboratory model for studying hepatitis C
9. Notre Dame researcher is studying role small dams play in pollution control
10. Assembling the transcriptome of a noxious weed: New resources for studying how plants invade
11. Studying bed bug actions for new management tactics
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Studying muscle function to advance treatment of heart failure
(Date:3/22/2016)... 22, 2016 According ... Market for Consumer Industry by Type (Image, Motion, ... (Communication & IT, Entertainment, Home Appliances, & ... to 2022", published by MarketsandMarkets, the market ... reach USD 26.76 Billion by 2022, at ...
(Date:3/18/2016)... --> --> ... & Unmanned Vehicles, Physical infrastructure and Perimeter Surveillance & Detection ... border security market and the continuing migration crisis in the ... has led visiongain to publish this unique report, ... defence & security companies in the border security ...
(Date:3/15/2016)... , March 15, 2016 Yissum ... , the technology-transfer company of the Hebrew University, announced ... of remote sensing technology of various human biological indicators. ... raising $2.0 million from private investors. ... based on the detection of electromagnetic emissions from sweat ...
Breaking Biology News(10 mins):
(Date:4/28/2016)... ... April 28, 2016 , ... As part of ... industry experts, and expanding its LATAM network and logistics capabilities. Enhancements have ... manage their clinical trial projects. , The expansion will provide unmatched clinical trial ...
(Date:4/27/2016)... Boston (PRWEB) , ... April 27, 2016 , ... ... driven by semantic web technology, today announced that it has been named to The ... life sciences, financial services and other markets, Cambridge Semantics serves the needs of end ...
(Date:4/27/2016)... ... 27, 2016 , ... The Pittcon Organizing Committee is pleased to announce that ... volunteer member of Committee since 1987. Since then, he has served in a number ... was chairman for both the program and exposition committees. In his professional career, Dr. ...
(Date:4/27/2016)... April 27, 2016 NanoStruck ... (OTCPink: NSKQB) ( Frankfurt : 8NSK) ... Pressemitteilung vom 13. August 2015 die Genehmigung von ... um zusätzliche 200.000.000 Einheiten auf 400.000.000 Einheiten zu ... bringen. Davon wurden 157.900.000 Einheiten mit dem ersten ...
Breaking Biology Technology: