Navigation Links
Study uncovers a molecular 'maturation clock' that modulates branching architecture in tomato plants
Date:12/26/2011

Cold Spring Harbor, N.Y. The secret to pushing tomato plants to produce more fruit might not lie in an extra dose of Miracle-Gro. Instead, new research from Cold Spring Harbor Laboratory (CSHL) suggests that an increase in fruit yield might be achieved by manipulating a molecular timer or so-called "maturation clock" that determines the number of branches that make flowers, called inflorescences.

"We have found that a delay in this clock causes more branching to occur in the inflorescences, which in turn results in more flowers and ultimately, more fruits," says CSHL Assistant Professor Zach Lippman, who led the research team. The new study, which involved a high-resolution, genome-level comparison of the stem cell populations from three tomato varieties that each have different branching architectures, will appear online in the Proceedings of the National Academy of Sciences during the week of December 26.

When a plant is ready to flower, populations of stem cells, called shoot apical meristems, which are found in the growing tips, stop producing leaves and begin producing flowers by transforming into "inflorescence meristems." Depending on the tomato variety, inflorescences meristems can make just one branch with a few flowers arranged in the familiar, photogenic zigzag pattern (shown), or multiple branches with dozens of flowers, as seen in closely-related wild relatives of tomatoes, which are native to South America.

Although most domesticated varieties, which have been bred to produce edible, delicious fruit, produce a single inflorescence branch with just a few flowers, some varieties make dozens of branches bearing hundreds of flowers. "Although one might think that all this branching is good, too much branching is not a desirable trait, because the plant spends so much energy on making flowers on those branches that it ends up not having the resources to set those flowers into fruits," explains Lippman. "So there needs to be a balance, which the wild relatives of tomatoes seem to have achieved."

Previous studies hypothesized that extreme branching might be the result of a pause or a delay in the maturation of inflorescence meristems, causing them to sprout extra branches instead of ending their growth by making flowers. "Our previous work as well as those of others hinted at the existence of a timer or clock," Lippman notes. "We wanted to define this clock at the highest resolution, in terms of the genes that modulate the rate of meristem maturation, with the idea that finding the genes that define the clock would enable us to tweak it to get the desired level of branching."

Using a systems biology approach and next-generation sequencing technology to "capture" the transcriptome the activity of all the genes in a genome of stem cells at five different stages of maturation, the team identified nearly 4000 genes that represent the clock. With help from CSHL associate professor and computational biologist Michael Schatz, the team, which included post-doctoral researchers Soon-ju Park and Ke Jiang, compared the clocks of a mutant variety that undergoes extreme branching and a wild relative from Peru that undergoes modest branching.

This analysis revealed that subtle differences in the activity of the clock's genes could alter branching architecture. "Our data showed that wild relatives of tomato have evolved to have a slight delay in maturation, which leads to just a few more branches and a doubling of the number of flowers and fruits compared to what is typically found on cultivated tomatoes grown for ketchup or in the home garden," explains Lippman, who is enthusiastic about the implications of this work and the next steps that his team will take. "We now have a master list of candidate genes that we can go after to manipulate the clock in order to make domesticated tomatoes produce a branching architecture that's similar to the wild variety," he says.


'/>"/>
Contact: Hema Bashyam
bashyam@cshl.edu
516-367-8455
Cold Spring Harbor Laboratory
Source:Eurekalert

Related biology news :

1. Study examines how diving marine mammals manage decompression
2. UMDs START gets $3.6 million to study terrorisms human causes and consequences
3. Human skull study causes evolutionary headache
4. Study reveals turn signals for neuron growth
5. Hellbender salamander study seeks answers for global amphibian decline
6. Study reveals gender bias of prospective parents
7. Wayne State study finds soybean compounds enhances effects of cancer radiotherapy
8. Study of skates and sharks questions assumptions about essential genes
9. Close family ties keep microbial cheaters in check, study finds
10. Barracuda babies: Novel study sheds light on early life of prolific predator
11. New study shows promise for preventing preterm births
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/6/2016)... RALEIGH, N.C. , Dec. 6, 2016 ... technology, announced today it has seen a third consecutive ... biometric sensor technology in 2016 with a 360 ... over last year. This increase was driven by sales ... well as robust interest in its technology for hearables ...
(Date:12/5/2016)...  The Office of Justice Programs, National Institute ... Enhance or Replace Medico Legal Autopsies?" on NIJ.gov.  ... replacing forensic autopsies with postmortem X-ray computed tomography, ... response to recommendations made by The National Academy ... as a potential component of medicolegal death investigations. ...
(Date:12/2/2016)... , Dec. 1, 2016   SoftServe , ... BioLock , an electrocardiogram (ECG) biosensor analysis ... a key IoT asset. The smart system ensures ... vehicle,s steering wheel and mobile devices to easily ... As vehicle technology advances, so too ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... , Dec. 6, 2016 Zimmer Biomet ... today announced the pricing terms of its previously-announced ... $1.25 billion aggregate purchase price (excluding accrued and unpaid ... date and excluding fees and expenses related to ... debt securities identified in the table below (collectively, ...
(Date:12/6/2016)...  The Texas Medical Center (TMC) and ... today announced the establishment of a new international BioBridge, ... Australia and the Texas Medical Center, the ... HISA and the Texas Medical Center, with the support ... global health innovation ecosystem where emerging technologies can be ...
(Date:12/6/2016)... ... 06, 2016 , ... RoviSys, a leading independent provider of ... announced the opening of their new office building today. Located at 480 Green ... to 200 employees focused on providing sales, engineering, and support services to customers ...
(Date:12/5/2016)... ... December 05, 2016 , ... This composition patent, ... cellulose nanofibrils. The composition claims are not limited to any particular process ... combination with polymers, carbon fibers, graphene, and other materials. A continuation application, ...
Breaking Biology Technology: