Navigation Links
Study suggests disruptive effects of anesthesia on brain cell connections are temporary

A study of juvenile rat brain cells suggests that the effects of a commonly used anesthetic drug on the connections between brain cells are temporary.

The study, published in this week's issue of the journal PLOS ONE, was conducted by biologists at the University of California, San Diego and Weill Cornell Medical College in New York in response to concerns, arising from multiple studies on humans over the past decade, that exposing children to general anesthetics may increase their susceptibility to long-term cognitive and behavioral deficits, such as learning disabilities.

An estimated six million children, including 1.5 million infants, undergo surgery in the United States requiring general anesthesia each year and a least two large-scale clinical studies are now underway to determine the potential risks to children and adults.

"There is concern now about cognitive dysfunction from surgery and anesthesiahow much these effects are either permanent or slowly reversible is very controversial," said Hugh Hemmings, Jr., chair of anesthesiology at Weill Cornell and the study's other senior author. "It has been suggested recently that some of the effects of anesthesia may be more lasting than previously thought. It is not clear whether the residual effects after an operation are due to the surgery itself, or the hospitalization and attendant trauma, medications and stressor a combination of these issues."

The team of biologists examined one of the most commonly used general anesthetics, a derivative of ether called "isoflurane" used to maintain anesthesia during surgery.

"Previous studies in cultured neurons and in the intact brains of rodents provided evidence suggesting that exposure to anesthetics might render neurons more susceptible to cell death through a process called 'apoptosis'," said Halpain. "While overt cell death could certainly be one way to explain any long-lasting neurocognitive consequences of general anesthesia, we hypothesized that there could be other cellular mechanisms that disrupt neural circuits without inducing cell death per se."

One such mechanism, she added, is known as "synaptotoxicity." In this mechanism of neural-circuit disruption, the "synapses," or junctions between neurons, become weakened or shrink away due to some factor that injures the neurons locally along their axons (the long processes of neurons that transmit signals) and dendrites (the threadlike extensions of neurons that receive nerve signals) without inducing the neurons themselves to die.

In the experiments at UC San Diego headed by Jimcy Platholi, a postdoctoral researcher in Halpain's lab who is now at Weill Cornell, the scientists used neurons from embryonic rats taken from the hippocampus, a part of the mammalian forebrain essential for encoding newly acquired memories and ensuring that short-term memories are converted into long-term memories. The researchers cultured these brain cells in a laboratory dish for three weeks, allowing the neurons time to mature and to develop a dense network of synaptic connections and "dendritic spines"specialized structures that protrude from the dendrites and are essential mediators of activity throughout neural networks.

"Evidence from animal studies indicates that new dendritic spines emerge and existing spines expand in size during learning and memory," explained Halpain. "Therefore, the overall numbers and size of dendritic spines can profoundly impact the strength of neural networks. Since neural network activity underlies all brain function, changes in dendritic spine number and shape can influence cognition and behavior."

Using neurons in culture, rather than intact animal brains, allowed the biologists to take images of the synapses at high spatial resolution using techniques called fluorescence light microscopy and confocal imaging. They also used time-lapse microscopy to observe structural changes in individual dendritic spines during exposure to isoflurane. Karl Herold, a research associate in the Hemmings laboratory and a co-author of the study, performed some of the image analysis.

"Imaging of human brain synapses at this level of detail is impossible with today's technology and it remains very challenging even in laboratory rodents," said Halpain. "It was important that we performed our study using rodent neurons in a culture dish, so that we could really drill down into the subcellular and molecular details of how anesthetics work."

The researchers wondered whether brief exposure to isoflurane would alter the numbers and size of dendritic spines, so they applied the anesthetic to the cultured rat cells at concentrations and durations (up to 60 minutes) that are frequently used during surgery.

"We observed detectable decreases in dendritic spine numbers and shape within as little as 10 minutes," said Halpain. "However this spine loss and shrinkage was reversible after the anesthetic was washed out of the culture."

"Our study was reassuring in the sense that the effects are not irreversible and this fits in with known clinical effects," said Hemmings. "For the most part, we find that the effects are reversible."

"We clearly see an effecta very marked effect on the dendritic spinesfrom use of this drug that was reversible, suggesting that it is not a toxic effect, but something more relevant to the pharmacological actions of the drug," he added. "Connecting what we found to the cognitive effects of isoflurane will require much more detailed analysis."

The team plans to follow up its study with future experiments to probe the molecular mechanisms and long-lasting consequences of isoflurane's effects on neuron synapses and examine other commonly-used anesthetics for surgery.


Contact: Kim McDonald
University of California - San Diego

Related biology news :

1. Study finds Europes habitat and wildlife is vulnerable to climate change
2. Dinosaurs fell victim to perfect storm of events, study shows
3. Study: Climate change and air pollution will combine to curb food supplies
4. First national study finds trees saving lives, reducing respiratory problems
5. New study draws links between wildlife loss and social conflicts
6. Zerenex™ (ferric citrate) long-term Phase 3 study results published in JASN
7. Study indicates large raptors in Africa used for bushmeat
8. Stanford study shows how to power California with wind, water and sun
9. Study gives new perspective on agricultural plastic, debris burning, and air quality
10. Rutgers study explores attitudes, preferences toward post-Sandy rebuilding
11. Studying impacts of indoor air pollution on tribal communities
Post Your Comments:
(Date:11/9/2015)... , Nov. 9, 2015  Synaptics Inc. (NASDAQ: ... today announced broader entry into the automotive market with ... match the pace of consumer electronics human interface innovation. ... are ideal for the automotive industry and will be ... Europe , Japan ...
(Date:10/29/2015)... Daon, a global leader in mobile biometric ... new version of its IdentityX Platform , IdentityX ... have already installed IdentityX v4.0 and are ... FIDO UAF certified server component as an option ... features. These customers include some of the largest and ...
(Date:10/27/2015)... , Oct. 27, 2015 In the present ... of concern for various industry verticals such as banking, ... to the growing demand for secure & simplified access ... ,sectors, such as hacking of bank accounts, misuse of ... equipment such as PC,s, laptops, and smartphones are expected ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... -- --> --> ... Market by Product & Services (Primer, Probe, Custom Oligos, ... End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - Global ... expected to reach USD 1,918.6 Million by 2020 from ... 10.1% during the forecast period. Browse 183 ...
(Date:11/24/2015)...  Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced that its Annual General ... a.m. Israel time, at the law offices of ... 36 th Floor, Tel Aviv, Israel . ... Izhak Tamir to the Board of Directors; , election ... , approval of an amendment to certain terms of options granted to ...
(Date:11/24/2015)... ... November 24, 2015 , ... Creation Technologies ... being named to Deloitte's 2015 Technology Fast 500 list of the fastest growing ... a FDA-cleared, Class II medical device that speeds up orthodontic tooth movement by ...
(Date:11/24/2015)... MUNICH and NEW YORK , ... irst investment by Bristol-Myers Squibb in a ... Bristol-Myers Squibb Company in which the companies ... products in immuno-oncology and other areas of unmet medical need. ... Squibb in LSP 5, the latest LSP fund. This is ...
Breaking Biology Technology: