Navigation Links
Study sheds light on genetic 'clock' in embryonic cells
Date:11/13/2012

As they develop, vertebrate embryos form vertebrae in a sequential, time-controlled way. Scientists have determined previously that this process of body segmentation is controlled by a kind of "clock," regulated by the oscillating activity of certain genes within embryonic cells. But questions remain about how precisely this timing system works.

A new international cross-disciplinary collaboration between physicists and molecular genetics researchers advances scientists' understanding of this crucial biological timing system. The study, co-authored by McGill University Prof. Paul Franois and Ohio State University Prof. Sharon L. Amacher and published in Developmental Cell, sheds light on the clock mechanism by providing the first real-time, visual evidence of how it operates at the level of individual cells.

While previous scientific studies have examined the oscillation phenomenon in the tissue of mouse embryos, the McGill and Ohio State researchers were able to observe and analyze it in single cells. To do so, they genetically modified zebrafish a freshwater fish whose body is nearly transparent during early development, making its anatomy easy to observe. The researchers used a fluorescent marker in the transgenic fish and developed software tools to monitor the concentration of a certain "cyclic" protein, whose production rises and falls with the oscillating expression of the molecular clock genes.

It is known that cells communicate with neighboring cells through a messaging system known as the Notch signaling pathway. In their experiments with the zebrafish, the researchers cut off this inter-cellular communication network enabling them to see how that would affect the oscillation pattern in individual cells and their neighbors.

These experiments revealed that cyclic protein concentrations in individual cells of the zebrafish continued to rise and fall, indicating that they continued to oscillate. With the inter-cellular signaling pathway blocked, however, the oscillations were no longer synchronized among neighboring cells. The cellular clocks were still ticking, in other words, but not in unison. This finding confirms that the Notch pathway serves to coordinate timing among cells a crucial role, since the cells must act in concert in order to form vertebrae.

By observing normal zebrafish embryos, the researchers were also able to show that cells desynchronize their oscillations while performing cellular division, then later resynchronize with their neighbors as they proceed collectively to form vertebrae.

"In humans, defects in Notch signaling are associated with congenital developmental disorders called spondylocostal dysostosis, that are typified by scoliosis and trunk dwarfism caused by malformed ribs and vertebrae," Amacher notes. "Studies such as ours may provide insight into potential therapies for human disease. It is likely that many cells in our bodies - stem cells, cancer cells - have similar molecular oscillators that regulate response to environmental signals. By unraveling such molecular clocks, we can understand how to modify them and thus change the number of oscillating cells that respond to differentiating signals, providing tremendous insight for studies in stem cell and cancer biology and tissue engineering."

"The formation of the vertebral column is very important, because everything follows from that" in the development of vertebrates, Franois adds. A physicist, he developed the computer tools used to analyze video footage of the zebrafish embryos. Francois's research focuses on the modeling of physical properties of gene networks and their evolution a field that has emerged at the nexus of biology and physics in recent years, following sequencing of the human genome and rapid growth in scientists' understanding of the processes inside cells.


'/>"/>

Contact: Chris Chipello
christopher.chipello@mcgill.ca
514-398-4201
McGill University
Source:Eurekalert

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. Law that regulates shark fishery is too liberal: UBC study
3. New study will help protect vulnerable birds from impacts of climate change
4. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
5. BYU study: Using a gun in bear encounters doesnt make you safer
6. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
7. Pycnogenol (French maritime pine bark extract) shown to improve menopause symptoms in new study
8. Crystal structure of archael chromatin clarified in new study
9. EU-funded study underlines importance of Congo Basin for global climate and biodiversity
10. University of Houston study shows BP oil spill hurt marshes, but recovery possible
11. Study demonstrates cells can acquire new functions through transcriptional regulatory network
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... -- NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or ... 2016 Annual Report on Form 10-K on Thursday April 13, 2017 ... ... Investor Relations section of the Company,s website at http://www.nxt-id.com  under ... http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... BROOKLYN, N.Y. , April 11, 2017 /PRNewswire-USNewswire/ ... identical fingerprints, but researchers at the New York ... University College of Engineering have found that partial ... fingerprint-based security systems used in mobile phones and ... previously thought. The vulnerability lies in ...
(Date:4/5/2017)... -- KEY FINDINGS The global market for ... of 25.76% during the forecast period of 2017-2025. The ... the growth of the stem cell market. ... INSIGHTS The global stem cell market is segmented on ... stem cell market of the product is segmented into ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... BARBARA, CALIFORNIA (PRWEB) , ... October 10, 2017 ... ... management, technological innovation and business process optimization firm for the life sciences and ... BoxWorks conference in San Francisco. , The presentation, “Automating GxP Validation ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board meeting in North Carolina, ... Harvard University’s Departments of Physics and Astronomy, has been selected for membership in ... team for the 2015 Breakthrough Prize in Fundamental physics for the discovery of the ...
(Date:10/7/2017)... ... October 06, 2017 , ... Phase ... metagenome deconvolution product, featuring the first commercially available Hi-C kit. Researchers can ... Hi-C metagenome deconvolution using their own facilities, supplementing the company’s full-service ProxiMeta ...
(Date:10/5/2017)... LINDA, CA (PRWEB) , ... October 05, 2017 , ... ... innovators, engineers, and scientists from around the world, is giving back to cancer research ... sold in October. , Now through October 31, shoppers can use promo code ...
Breaking Biology Technology: