Navigation Links
Study reveals surprising details of the evolution of protein translation

CHAMPAIGN A new study of transfer RNA, a molecule that delivers amino acids to the protein-building machinery of the cell, challenges long-held ideas about the evolutionary history of protein synthesis.

In the study, researchers report that the dual functions of transfer RNA (reading the genetic blueprint for a protein, and adding a specific amino acid to the protein as it is formed) appear to have originated independently of one another. The new findings are detailed in the July 30 Public Library of Science (PLoS) ONE.

University of Illinois crop sciences professor Gustavo Caetano-Anolls and postdoctoral researcher Feng-Jie Sun made the discovery by looking for clues to the evolution of protein translation in the sequence and structure of transfer RNA (tRNA).

"Structure is highly conserved, capturing information that is evolutionarily deep," Caetano-Anolls said. "It was only logical to focus on transfer RNA, a molecule that is believed to be very ancient and is truly central to the entire protein synthesis machinery." During protein synthesis, tRNA's dual function is reflected in its unique

L-shaped structure. One end of the molecule decodes messenger RNA (a molecule that carries instructions for the sequence of amino acids in a protein), while the other transfers a specific amino acid to the growing protein chain.

In previous studies, scientist assumed that the two functional domains of tRNA had evolved together. Sun and Caetano-Anolls put this assumption to the test.

They began by constructing an evolutionary family tree based on the sequence and two-dimensional structures of tRNA molecules representing every domain of life (bacteria; the microbes known as archaea; and eucarya, the domain that includes animals, plants, fungi and many other organisms) as well as viruses.

There are several dozen tRNAs (each reads a specific region of the genetic blueprint for a protein and each carries only one of the 20-plus amino acids found in proteins) so the researchers looked for clues to their evolutionary histories by comparing their physical and functional traits.

They converted the unique features of the individual tRNA cloverleaf structures into coded characters, a process that allowed a computerized search for the most parsimonious (the simplest, most probable) tRNA family trees for different organismal lineages. In this way they were able to test competing evolutionary hypotheses against the data mined from the structure of the tRNA itself.

"Our findings uniquely focus on structure, the actual aspect of the molecule that encases its function," Caetano-Anolls said.

The analysis indicated that the two functions of the tRNA had different evolutionary histories, Sun said, which suggests that they were acquired at different points in time.

The study predicted that the loading of amino acids on tRNA molecules preceded the refinement of the genetic code into codons, the regions on the messenger RNA that are read by individual tRNAs.

"For the first time, we believe we make this distinction between the evolution of the genetic code (codon discovery) and the evolution of amino acid charging," Sun said.


Contact: Diana Yates
University of Illinois at Urbana-Champaign

Related biology news :

1. New breastfeeding study shows most moms quit early
2. UGA gets $2.5 million in grants to study plants to make biofuels
3. UT Health Science Center researchers study diet and autism
4. TORC at UH turns to virtual world of Second Life for new study
5. Study helps pinpoint genetic variations in European Americans
6. Study finds connections between genetics, brain activity and preference
7. Humans response to risk can be unnecessarily dangerous, finds Tel Aviv University study
8. Case Western Reserve University study looks at keeping migrant workers children healthy
9. Lab study shows methadone breaks resistance in untreatable forms of leukemia
10. ID Analytics Study Reveals Employees Criminal Misuse of Stolen Identities
11. New study shows compounds from soy affect brain and reproductive development
Post Your Comments:
(Date:10/26/2015)... October 26, 2015 ... adds Biometrics Market Shares, ... as well as Emerging Biometrics Technologies: ... to its collection of IT and ... . --> ...
(Date:10/26/2015)... Calif. , Oct. 26, 2015  Delta ID ... biometric authentication to mobile and PC devices, announced its ... smartphone, the arrows NX F-02H launched by NTT DOCOMO, ... NX F-02H is the second smartphone to include iris ... technology in ARROWS NX F-04G in May 2015, world,s ...
(Date:10/23/2015)... BERLIN and GOLETA, California ... the HFES conference, BIOPAC and SensoMotoric Instruments (SMI) announce ... and eye tracking data captured during interactive real-world tasks ... plug and play integration of their established wearable solutions ... researchers to synchronize gaze behavior captured with SMI ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Nov. 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: HALO ... New York on Wednesday, December 2 at ... , president and CEO, will provide a corporate overview. ... at 1:00 p.m. ET/10:00 a.m. PT . ... will provide a corporate overview. --> th Annual ...
(Date:11/24/2015)... Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... on behalf of the Toronto Stock Exchange, confirms that ... are no corporate developments that would cause the recent ... --> --> About Aeterna Zentaris Inc. ... --> Aeterna Zentaris is a specialty biopharmaceutical ...
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model ... Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person View ... years. Many AMA members have embraced this type of racing and several new model ...
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ ... (the "Company") announced today that the remaining 11,000 ... Common Share Purchase Warrants (the "Series B Warrants") ... agreement were exercised on November 23, 2015, which ... Common Shares.  After giving effect to the issuance ...
Breaking Biology Technology: