Navigation Links
Study reveals how the world's first drug for amyloid disease works
Date:5/29/2012

LA JOLLA, CA May 29, 2012 Scientists from The Scripps Research Institute and Pfizer Inc. have published a new study showing how a new drug called tafamidis (Vyndaqel) works. Tafamidis, approved for use in Europe and currently under review by the US Food and Drug Administration (FDA), is the first medication approved by a major regulatory agency to treat an amyloid disease, a class of conditions that include Alzheimer's.

Tafamidis treats a deadly nerve disease caused by transthyretin (TTR) amyloid fibril formation, or the accumulation of abnormal assemblies of the TTR protein. The drug inhibits TTR aggregation, and clinical trials have shown that it delays the typical progression of nerve destruction in polyneuropathy patients.

"The details in this new paper, combined with clinical trial data, show for the first time that an amyloid disease can be successfully treated by reducing the rate of amyloid formation," said Jeffery W. Kelly, chair of the Department of Molecular and Experimental Medicine, the Lita Annenberg Hazen Professor of Chemistry, and member of the Skaggs Institute for Chemical Biology at Scripps Research. Kelly is a senior author of the new paper, which appears in an advance, online Early Edition issue of Proceedings of the National Academy of Sciences on May 29, 2012.

An Array of Progressive Symptoms

While the naturally occurring or "wild type" transthyretin protein is prone to aggregate in older people causing cardiac disease, a variety of destabilizing mutations lead either to a primary cardiomyopathy or to early onset forms of polyneuropathy, known as TTR familial amyloid polyneuropathy, affecting about 10,000 people worldwide.

Familial amyloid polyneuropathy compromises the peripheral and autonomic nervous systems, with symptoms including sensory deprivation and pain, muscle weakness and wasting, and alternating constipation and diarrhea. In some familial amyloid polyneuropathy patients, cardiomyopathy can present later in the course of the disease.

In transthyretin amyloid diseases that present primarily as a cardiomyopathy, doctors have been able to stave off heart failure with a liver and heart transplant; familial amyloid polyneuropathy patients receiving a liver transplant can benefit, since the liver is the primary source of mutant, disease-associated TTR. For the 90 percent of patients surviving transplantation, this surgical form of gene therapy slows familial amyloid polyneuropathy progression, but does not stop it as the wild type transthyretin protein can continue to form amyloid.

Left untreated, the TTR amyloidoses are relentlessly progressive and inevitably fatal, with a course of about a decade from initial symptoms to death.

The Search for Treatments

Kelly began searching for TTR-amyloidogenesis-inhibitors in the mid 1990s, and a few years later began to focus on a family of TTR-binding compounds, the so-called benzoxazoles, whose basic design would further be elaborated into tafamidis using a structure-based drug design paradigm. In 2003, Kelly co-founded a Cambridge, Massachusetts-based biotechnology startup, FoldRx Pharmaceuticals (now a fully owned subsidiary of Pfizer), to develop these compounds and optimize one of them into an orally available drug for the treatment of the TTR amyloidoses. The result was tafamidis meglumine, whose preclinical tests remained unpublished until now.

Kelly and his colleagues designed tafamidis to bind to the natural, functional TTR structure (mutant and wild type), in a way that prevents it from deviating from this natural, functional form into the amyloid state. TTR's natural, functional form is a "tetramer" made from four copies of the protein. Amyloidosis occurs when these tetramers come apart and the individual TTR proteins ("monomers") undergo shape changes enabling them to misassemble into dysfunctional amyloid aggregates. Included in the TTR aggregate distribution are amyloid fibrilsprotein stacks made from millions of TTR monomersalthough researchers suspect that smaller, shorter-lived pre-amyloid aggregates do more direct damage to nerve cells and nerve fibers.

The early onset TTR amyloidoses are caused by inherited TTR mutations that weaken the tetramers' ability to stick together, producing monomers more likely to aggregate into amyloids and other aggregate structures. Fortunately, the TTR tetramer, which is the backup carrier of the thyroid hormone thyroxine through the bloodstream, has two unoccupied thyroxine-binding sites along its longest and weakest seam. Kelly and his colleagues designed tafamidis to grab either of these thyroxine-binding sites, in a way that bridges the seam and helps keep the tetramer from coming apart.

A Stabilizing Influence

The newly published molecular and structural data show that tafamidis does indeed stabilize TTR tetramers, under normal physiological conditions in the bloodstream and even under abnormal conditions when they would be much more likely to fall apart and reassemble as amyloids. Tafamidis has this stabilizing effect on tetramers of the normal "wild-type" TTR protein as well as on those made from disease-associated mutant and wild type TTR subunits.

"There are more than a hundred TTR mutations that cause amyloidosis, but the vast majority of those TTRs are capable of being bound by tafamidis and held in the natural tetramer state," said Kelly.

Throughout the development of tafamidis-type compounds, Kelly and his colleagues collaborated with the Scripps Research laboratory of Ian A. Wilson, who is Hansen Professor of Structural Biology and a member of the Skaggs Institute at Scripps Research. The Wilson laboratory specializes in the use of X-ray crystallography to determine the atomic structures of interacting proteins. Whenever a small molecule stabilizer of TTR was generated that afforded interesting biochemical stabilization, Wilson's team analyzed its structure. "By the end, we had determined more than 30 small molecule stabilizerTTR structures, in an effort to generate tafamidis and identify the molecular interactions that lead to stabilization of the natural TTR tetramer," said Stephen Connelly, a Wilson laboratory staff scientist who performed these structural studies and who was a co-author the paper.

The small molecule benzoxazole, tafamidis, that ultimately entered clinical trials was optimized for several criteria, including its ability to stabilize the TTR tetramer's weakest seam. "We found that one end of the tafamidis structure fits neatly into the tetramer's hydrophobic thyroxine-binding pocket, while at the other end it binds to nearby polar amino acids, both types of interactions bridging or stabilizing the two halves of the tetramer," Connelly said. The drug's stabilizing force greatly reduces the rate at which these tetramers come apart, and in so doing greatly reduces the rate of amyloid formation.

Tafamidis is considered an "orphan" drug because its initial intended treatment population is the relatively small polyneuropathy population. However, even wild-type TTR forms amyloid in 10 to 20 percent of the growing elderly populationleading to cardiomyopathy. Thus, this condition, and drugs such as tafamidis that can treat it, could be of growing interest to the pharmaceutical industry.


'/>"/>

Contact: Mika Ono
mikaono@scripps.edu
858-784-2052
Scripps Research Institute
Source:Eurekalert  

Related biology news :

1. Study finds emissions from widely used cookstoves vary with use
2. NIH-funded study examines use of mobile technology to improve diet and physical activity behavior
3. Study provides new insights into structure of heart muscle fibers
4. U of M study finds titan cells protect Cryptococcus
5. Variations of a single gene can lead to too much or too little growth, study shows
6. Yale study concludes public apathy over climate change unrelated to science literacy
7. T cells hunt parasites like animal predators seek prey, a Penn Vet-Penn Physics study reveals
8. Study finds voter genetics may predict election outcomes
9. Army study: DNA vaccine and duck eggs protect against hantavirus disease
10. New HealthFocus® International Study Reveals Five Very Different Weight Management Consumers
11. New study shows how nanotechnology can help detect disease earlier
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Study reveals how the world's first drug for amyloid disease works
(Date:5/20/2016)... , May 20, 2016  VoiceIt is ... partnership with VoicePass. By working together, ... experience.  Because VoiceIt and VoicePass take slightly different ... engines increases both security and usability. ... excitement about this new partnership. "This ...
(Date:5/12/2016)... 2016 WearablesResearch.com , a brand of ... results from the Q1 wave of its quarterly wearables ... consumers, receptivity to a program where they would receive ... insurance company. "We were surprised to see ... Michael LaColla , CEO of Troubadour Research, "primarily because ...
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016  Blueprint Bio, a company ... to the medical community, has closed its Series A ... Nunez . "We have received a commitment ... capital we need to meet our current goals," stated ... us the runway to complete validation on the current ...
(Date:6/23/2016)... Francisco, CA (PRWEB) , ... June 23, 2016 ... ... (EDC) software, is exhibiting at the Pennsylvania Convention Center and will showcase its ... Annual conference. ClinCapture will also be presenting a scientific poster on Disrupting Clinical ...
(Date:6/23/2016)... , June 22, 2016  Amgen (NASDAQ: ... of the QB3@953 life sciences incubator to ... health. The shared laboratory space at QB3@953 was created ... a key obstacle for many early stage organizations - ... of the sponsorship, Amgen launched two "Amgen Golden Ticket" ...
(Date:6/22/2016)... 22, 2016 Research and Markets has announced ... report to their offering. ... from $29.3 billion in 2013. The market is expected to grow ... 2015 to 2020, increasing from $50.6 billion in 2015 to $96.6 ... during the forecast period (2015 to 2020) are discussed. As well, ...
Breaking Biology Technology: