Navigation Links
Study provides new insights into structure of heart muscle fibers
Date:5/28/2012

A study led by researchers from McGill University provides new insights into the structure of muscle tissue in the heart a finding that promises to contribute to the study of heart diseases and to the engineering of artificial heart tissue.

The research, published in the Proceedings of the National Academy of Sciences (PNAS), reveals that the muscle fibers in the heart wall are locally arranged in a special "minimal surface," the generalized helicoid. The results add a significant new dimension to our understanding of the structure and function of heart-wall muscle fiber since minimal surfaces arise in nature as optimal solutions to physical problems. (A more familiar example of a minimal surface is the film that forms when a wireframe is dipped in a solution of soap.)

Surgeons and anatomists have been examining the geometry of muscle fibers in the heart for decades, and have long known that muscle cells are aligned to form helices that wind around the ventricles. But these analyses have been confined largely to the level of individual fibers. Partly because of the limitations of traditional histology techniques, little work has been done on the more-complex geometry of groups of fibers.

Working with collaborators at Eindhoven University of Technology in the Netherlands, and Yale University in the U.S., the McGill-led team used a combination of Diffusion Magnetic Resonance Imaging (dMRI) and computer modeling to reveal the way that bundles of fibers bend together. The researchers examined images of the heart tissue of rats, humans and dogs and found the same pattern.

"You can think of it as analyzing a clump of hair instead of an individual hair strand," explains Professor Kaleem Siddiqi of McGill's School of Computer Science. "We've discovered that the clump bends and twists in the form of a particular minimal surface, the generalized helicoid and this is true across species. It's not particular to just one mammal. The implications of these findings are broad."

The knowledge could be used, for example, to provide a scaffold to guide the repair of heart-wall damage caused by heart attacks. While regeneration of muscle tissue is a major area in bioengineering, most developments in this field have involved skeletal muscle tissue such as that in arms and legs which is arranged in a different, more linear structure.

The first author of the study is Dr. Peter Savadjiev of Harvard Medical School, whose research on this problem began while he was a doctoral student of Prof. Siddiqi's at McGill. Other co-authors of the paper are Gustav J. Strijkers and Adrianus J. Bakermans of Eindhoven University, Emmanuel Piuze of McGill, and Steven W. Zucker of Yale University.


'/>"/>

Contact: Chris Chipello
christopher.chipello@mcgill.ca
514-398-4201
McGill University
Source:Eurekalert

Related biology news :

1. U of M study finds titan cells protect Cryptococcus
2. Variations of a single gene can lead to too much or too little growth, study shows
3. Yale study concludes public apathy over climate change unrelated to science literacy
4. T cells hunt parasites like animal predators seek prey, a Penn Vet-Penn Physics study reveals
5. Study finds voter genetics may predict election outcomes
6. Army study: DNA vaccine and duck eggs protect against hantavirus disease
7. New HealthFocus® International Study Reveals Five Very Different Weight Management Consumers
8. New study shows how nanotechnology can help detect disease earlier
9. University of Leicester study finds low agreeableness linked to a preference for aggressive dogs
10. Squid ink from Jurassic period identical to modern squid ink, U.Va. study shows
11. Richer parasite diversity leads to healthier frogs, says University of Colorado study
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/15/2016)... Dec. 15, 2016   WaferGen Bio-systems, Inc. ... technology company, announced today that on December 13, 2016, ... of The Nasdaq Stock Market LLC which acknowledged that, ... of WaferGen,s common stock had been at $1.00 or ... regained compliance with Listing Rule 5550(a)(2) of the Nasdaq ...
(Date:12/15/2016)... , Dec. 14, 2016 "Increase in ... biometrics market" The mobile biometrics market is expected to ... 49.33 billion by 2022, at a CAGR of 29.3% ... factors such as the growing demand for smart devices, ... transactions. "Software component is expected to grow ...
(Date:12/7/2016)... 2016 According to a new market research report "Emotion ... Expression, Voice Recognition), Service, Application Area, End User, And Region - Global Forecast ... USD 6.72 Billion in 2016 to USD 36.07 Billion by 2021, at a ... Reading ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:1/20/2017)... , Jan. 20, 2017 Ginkgo Bioworks, ... Gen9, a pioneer in the synthesis and assembly ... expertise in assembling pathway-length synthetic DNA into Ginkgo,s ... capacity in the construction of new organism designs ... "Gen9 was founded to significantly increase ...
(Date:1/19/2017)... 2017  Market Research Future has a half cooked research report ... is growing rapidly and expected to reach USD 450 Million by ... ... Market has been assessed as a swiftly growing market and expected ... the coming future. There has been a tremendous growth in the ...
(Date:1/19/2017)... , ... January 19, 2017 ... ... advanced software solutions for pharmaceutical research and development (R&D), today announced the ... omic data analysis and interpretation for the rapidly evolving field of precision ...
(Date:1/19/2017)... Mass. , Jan. 19, 2017 AquaBounty ... focused on enhancing productivity in aquaculture and a majority-owned ... announces that it has completed the listing of its ... the equity subscription from Intrexon. "AquaBounty,s listing ... that will broaden our exposure to the U.S. markets ...
Breaking Biology Technology: