Navigation Links
Study provides insight on a common heart rhythm disorder
Date:10/7/2008

University of Iowa researchers and colleagues in France have identified a gene variant that causes a potentially fatal human heart rhythm disorder called sinus node disease. Also known as "sick sinus syndrome," the disease affects approximately one in 600 heart patients older than 65 and is responsible for 50 percent or more of the permanent pacemaker placements in the United States.

While the newly discovered gene variant is rare, the study provides insight into cellular mechanisms that regulate sinus node function and identifies an unanticipated new pathway for developing future therapies to regulate more common forms of sinus node disease. The findings, which also have research implications beyond heart disease, were published online Oct. 1 by the Proceedings of the National Academy of Sciences.

The team first analyzed data from two families in France: a family of 74 individuals, 26 of whom had sinus node dysfunction, and a family of 44 individuals, 13 of whom had the disease. Many of the affected individuals carried the same gene variant, and many experienced variable heart rate and bradycardia (dangerously low heart rate).

The investigators found that variants in a gene called ankyrin 2, or ANK2, resulted in dysfunction in the protein ankyrin-B in the members of these two different families, said the study's senior author Peter Mohler, Ph.D., associate professor of internal medicine in the University of Iowa Carver College of Medicine.

"While a small number of the patients displayed heart disease symptoms, including ventricular arrhythmias, the prevalence of sinus node dysfunction in these patients was extremely high. In fact, most required the implantation of cardiac pacemakers," said Mohler, who also is a Pew Scholar. "We predict that there are likely additional unidentified ankyrin variants in the larger general population that predispose humans to a combination of heart disease symptoms, including sinus node dysfunction, atrial fibrillation and ventricular arrhythmias.

"We were fortunate in this study to assemble an amazing collaboration between outstanding basic science laboratories at the University of Iowa and a group of internationally-renowned clinical electrophysiologists and geneticists in France," he added.

Blood circulation through the body depends on the coordinated contraction of specialized heart cells called ventricular cardiomyocytes. Cells in the sinoatrial node have a different role -- to maintain the heart's normal rhythm.

"There are thousands of ventricular cells in the heart, but there are only hundreds of sinoatrial node cells, so each nodal cell is absolutely critical for every beat of the human heart," Mohler said.

Because there are so few sinoatrial node cells, it has been difficult until recently for scientists to get sample cells from human or animal models, noted Thomas Hund, Ph.D., a member of the study team and University of Iowa associate in internal medicine.

"Building on others' discoveries, scientists in Professor Mohler's Professor Mark Anderson's, and Assistant Professor Long-Sheng Song's lab perfected methods to isolate mouse sinoatrial node cells. We were then able to image these cells and see what was different about them," Hund said.

Based on research previously published by Mohler in 2003 in the journal Nature, the investigators knew that in ventricular cardiomyocytes the protein ankyrin-B behaves like a "tugboat," delivering ion channels and anchoring them to specific domains on the cell membrane. These ion channels serve as conduits for the electrical activity that triggers cell contraction. The team found that ankyrin plays a similar critical role in organizing ion channels for the sinoatrial node cells, making it possible for these cells to maintain the normal heart rhythm.

"Taken together, these studies suggest that ankyrin-B and similar proteins organize cell systems to ensure that cellular components don't float around randomly," Mohler said. "Understanding how these cells behave may help us learn how to fix malfunctions that occur when people age or experience common forms of cardiac disease.

"Genes that make ankyrin or proteins like it are probably going to be the next set of genes targeted for understanding diseases that involve cells with electrical activity," he added. "In addition to heart disease, ankyrins could be involved in other 'excitable' cell diseases such as epilepsy, bipolar disease and diabetes."


'/>"/>

Contact: Becky Soglin
becky-soglin@uiowa.edu
319-335-6660
University of Iowa
Source:Eurekalert

Related biology news :

1. JDRF funded study links hygiene hypothesis to diabetes prevention
2. Study: Bird diversity lessens human exposure to West Nile Virus
3. Brookhaven scientists take off for southeastern Pacific climate study
4. Study finds genetic variant plays role in cleft lip
5. NASA picks ASU research team to guide study of search for life
6. NIH selects Case Western Reserve University to participate in National Childrens Study
7. Brown University and Women & Infants Hospital expand national childrens study to Bristol County
8. Study looks at psychological impact of gene test for breast cancer
9. UNC study on properties of carbon nanotubes, water could have wide-ranging implications
10. Sweat it out: UH study examines ability of sweat patches to monitor bone loss
11. Study reveals specific gene in adolescent men with delinquent peers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/5/2016)... , Dec. 5, 2016  The Office ... today published "Can CT Scans Enhance or Replace ... the potential of supporting or replacing forensic autopsies ... CT scan. In response to recommendations ... is exploring using CT scans as a potential ...
(Date:12/2/2016)... , Dec. 1, 2016   SoftServe , ... BioLock , an electrocardiogram (ECG) biosensor analysis ... a key IoT asset. The smart system ensures ... vehicle,s steering wheel and mobile devices to easily ... As vehicle technology advances, so too ...
(Date:11/30/2016)... , Nov. 30, 2016  higi SH ... new partnership initiative targeting national brands, industry thought-leaders ... reward their respective audiences for taking steps to ... its inception in 2012, higi has built the ... impacting over 38 million people who have conducted ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... Dec. 8, 2016  Renova™ Therapeutics, a biotechnology ... failure and type 2 diabetes, announced that it ... adeno-associated virus (AAV) vector developed in the laboratory ... at Stanford University. The company plans to use ... therapy product pipeline. "Early research ...
(Date:12/8/2016)... Oxford Gene Technology (OGT), ... panel range with the launch of the SureSeq myPanel™ NGS ... variants in familial hypercholesterolemia (FH). The panel delivers single nucleotide ... single small panel and allows customisation by ,mix and match, ... for LDLR , P C SK9 ...
(Date:12/8/2016)... ... December 08, 2016 , ... This CAST literature review and report looks at ... focus on the economic effects in countries that are major global commodity exporters and ... the resultant risk of low level presence (LLP) puts large volumes of trade worth ...
(Date:12/8/2016)... 8, 2016 Eutilex Co. Ltd. today announced ... $18.9M) Series A financing. This financing round included participation ... and SNU Bio Angel. This new funding brings the ... (US $27.7M) since its founding in 2015. ... development and commercialization of its immuno-oncology programs, expand its ...
Breaking Biology Technology: