Navigation Links
Study of dragonfly prey detection wins PNAS Cozzarelli Prize

WOODS HOLE, MASS.--Paloma T. Gonzalez-Bellido, who is now a postdoctoral scientist at the Marine Biological Laboratory (MBL), and colleagues from Howard Hughes Medical Institute, University of Minnesota, and Union College have been awarded a 2012 Cozzarelli Prize by the editorial board of Proceedings of the National Academy of Sciences (PNAS).

Gonzalez-Bellido and colleagues were honored for the "scientific excellence and originality" of their study of prey detection and interception in dragonflies.

The research was performed at Howard Hughes Medical Institute's Janelia Farm Research Campus, where Gonzalez-Bellido was a postdoctoral scientist prior to joining the MBL's Program in Sensory Physiology and Behavior in September 2011.

The study provides insight into basic visual-motor neural processing, and has implications for the development of "bioinspired" prosthetics for humans.

"I am honored to receive recognition for this work, for which we bridged the clinical and neuroethological fields, and developed new techniques," says Gonzalez-Bellido. "This award has provided me with fuel to keep up the hard work and further my research plans."

In order for a dragonfly to intercept its prey in midair (which dragonflies do with a 95% success rate), it needs to quickly track the prey and predict its future location. To understand how they undertake this complex task, Gonzalez-Bellido and her co-authors studied a small group of 16 motor neurons, called target-selective descending neurons (TSDNs), in the dragonfly Libellula luctuosa. These neurons, originally discovered by co-author Robert M. Olberg (Union College) in the green darner dragonfly, originate in the brain and extend to the thoracic ganglia, where the neural signal is interpreted and translated into wing muscle movements. Surprisingly, the scientists found that this small group of neurons can detect the direction of target prey with high accuracy and reliability across 360 degrees, and that this information is relayed from the brain to the wing motor centers in population vector form.

In 1988, co-author Apostolos Georgopoulos and his colleagues showed in monkeys that from the activity of neurons in the motor cortex, the population vector algorithm can predict the monkey's upcoming arm movement. However, to achieve a more accurate prediction with this algorithm, upwards of 200 neurons were needed. Thus, the present discovery that a highly accurate neural code carrying information about target direction can be achieved with just 16 neurons is enlightening, and could have applications in the development of bioinspired robots. (Georgopolos is an MD-PhD at the University of Minnesota/Veterans Administration Medical Center who is interested in the development of prosthetics.)

Randy Schekman, PhD, editor-in-chief of PNAS, describes the papers chosen for the Cozzarelli Prize as being "of exceptional interest These papers are not merely technically superior but have had special impact and maybe novel techniques or novel applications of techniques, or very important discoveries."

For this study, Gonzalez-Bellido and Trever Wardill (then at HHMI) developed a new protocol for labeling and confocal imaging of neurons in thick invertebrate tissue samples. In addition, her co-authors and former HHMI colleagues Hanchuan Peng and Jinzhu Yang developed a method for automatic 3D digital reconstruction (tracing) of neurons in microscopic images.

Gonzalez-Bellido sees the dragonfly as a promising model for understanding the evolution of neural systems. "It's exciting that the same computation [the population vector algorithm] is used by monkeys and dragonflies for this task. Dragonflies belong to the most ancient groups of flying insects on earth, and they have changed little in 250 million years" she says.

The Cozzarelli Award was established in 2005 and named in 2007 to honor late PNAS editor-in-chief Nicholas R. Cozzarelli. Gonzalez-Bellido and the other awardees will be recognized at an awards ceremony during the National Academy of Sciences Annual Meeting on April 28, 2013, in Washington, D.C.

Out of more than 3,700 papers published in the journal last year, the editors selected Gonzalez-Bellido's paper and five others for the Cozzarelli Prize.


Contact: Diana Kenney
Marine Biological Laboratory

Related biology news :

1. Study offers new insights on invasive fly threatening US fruit crops
2. Study questions the role of kinship in mass strandings of pilot whales
3. Dinosaur-era climate change study suggests reasons for turtle disappearance
4. Study: Probiotics reduce stress-induced intestinal flare-ups
5. Carnivores, livestock and people manage to share same space study finds
6. Marine diversity study proves value of citizen science
7. BUSM study reveals therapeutic targets to alter inflammation, type 2 diabetes
8. Sri Lankan snake study reveals new species, rich biodiversity in island country
9. UF study shows spiders, not birds, may drive evolution of some butterflies
10. Study shows how one insect got its wings
11. New genetic study confirms Indian origins of pumpkins and cucumbers
Post Your Comments:
Related Image:
Study of dragonfly prey detection wins PNAS Cozzarelli Prize
(Date:6/7/2016)... 7, 2016  Syngrafii Inc. and San Antonio ... that includes integrating Syngrafii,s patented LongPen™ eSignature "Wet" ... collaboration will result in greater convenience for SACU ... while maintaining existing document workflow and compliance requirements. ... Highlights: ...
(Date:6/1/2016)... NEW YORK , June 1, 2016 ... Biometric Technology in Election Administration and Criminal Identification to ... According to a recently released TechSci Research report, " ... Sector, By Region, Competition Forecast and Opportunities, 2011 - ... $ 24.8 billion by 2021, on account of growing ...
(Date:5/9/2016)... 2016 Elevay is currently known ... freedom for high net worth professionals seeking travel for ... connected world, there is still no substitute for a ... sealing your deal with a firm handshake. This is ... advantage of citizenship via investment programs like those offered ...
Breaking Biology News(10 mins):
(Date:6/23/2016)...   Boston Biomedical , an industry leader ... target cancer stemness pathways, announced that its lead ... Designation from the U.S. Food and Drug Administration ... gastroesophageal junction (GEJ) cancer. Napabucasin is an orally ... stemness pathways by targeting STAT3, and is currently ...
(Date:6/23/2016)... 2016  The Prostate Cancer Foundation (PCF) is pleased to announce ... cures for prostate cancer. Members of the Class of 2016 were selected from ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... ... 23, 2016 , ... In a new case report published today in STEM ... who developed lymphedema after being treated for breast cancer benefitted from an injection of ... dealing with this debilitating, frequent side effect of cancer treatment. , Lymphedema ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... is exhibiting at the Pennsylvania Convention Center and will showcase its product’s latest ... ClinCapture will also be presenting a scientific poster on Disrupting Clinical Trials in ...
Breaking Biology Technology: