Navigation Links
Study may explain exercise-induced fatigue in muscular dystrophies

A University of Iowa study suggests that the prolonged fatigue after mild exercise that occurs in people with many forms of muscular dystrophy is distinct from the inherent muscle weakness caused by the disease.

The research, which is published in Nature Advance Online Publication Oct. 26, identifies a faulty signaling pathway that appears to cause exercise-induced fatigue in mouse models of muscular dystrophy. Moreover, the study shows that Viagra can overcome the signaling defect and relieve the fatigue. The findings suggest that targeting the signaling pathway may lead to therapies for this type of fatigue.

"This is an exciting finding and our research suggests that there probably are many different neuromuscular conditions where fatigue could be treated by targeting this newly discovered pathway," said Kevin Campbell, Ph.D., UI professor and head of molecular physiology and biophysics and a Howard Hughes Medical Institute investigator, who holds the Roy J. Carver Chair of Physiology and Biophysics.

Using animal models, the researchers showed that if an enzyme called neuronal nitric oxide synthase (nNOS) is not present at its normal location on the muscle membrane, then blood vessels that supply active muscles do not relax normally and the animals experience post-exercise fatigue.

Early clues about the role of nNOS came from observing that the significant inactivity of dystrophic mice following mild exercise was very similar to the fatigue experience by muscular dystrophy patients after a short period of walking.

"A clinician colleague said, 'Those mice behave just like my patients with Becker muscular dystrophy.' As soon as he said that we knew what might be going on, because Becker patients have mislocalized nNOS," Campbell said.

Working with mouse models of muscular dystrophy and normal mice engineered to lack nNOS, the UI team, including lead study author Yvonne Kobayashi, Ph.D., UI research associate in molecular physiology and biophysics, showed that mice with misplaced or missing nNOS exhibited prolonged fatigue after mild exercise.

"The mice without nNOS have normal muscles and can exercise quite well, but after just mild exercise, we found that they had the intense fatigue response," Kobayashi said.

Blood vessel imaging of these mice showed post-exercise constriction of the blood vessels supplying muscle. Blocking nNOS activity in normal mice also produced post-exercise fatigue and narrowed blood vessels to the muscles.

The team also found that although gene therapy could restore the structure and function of an important component of muscle membranes in mice with muscular dystrophy, this treatment did not alleviate the post-exercise fatigue. Further analysis showed that although the muscle membrane complex was intact, nNOS was still not correctly localized to the membrane, and blood vessels supplying skeletal muscle were abnormally constricted after mild exercise.

"The signaling pathway probably maintains blood flow into the muscle during exercise and keeps the blood flow going after exercise. But when nNOS is missing or mislocalized, this pathway breaks down," Campbell explained. "The mice with mislocalized nNOS are able to exercise, but after exercise that reduced blood flow to the recovering muscles produces the fatigue."

To determine if nNOS was affected in humans with muscular dystrophy, Steven Moore, M.D., Ph.D., UI professor of pathology and study co-author, examined muscle biopsies from 425 patients with many different forms of muscular dystrophy. He found that nNOS was missing or reduced in most cases, suggesting a common mechanism of fatigue.

"Our findings could lead to a better understanding of fatigue under other physiological conditions in which muscle nNOS expression, localization, or activity is affected," Kobayashi added.

The enzyme nNOS makes a signaling molecule called nitric oxide, which stimulates production of a chemical called cGMP that causes smooth muscle around blood vessels to relax thereby increasing blood flow.

This nitric oxide signaling pathway is turned off by phosphodiesterase (PDE), an enzyme that breaks down cGMP. Viagra, a drug designed to increase blood flow, inhibits PDE and prolongs the existence of the cGMP molecules that promote blood vessel dilation.

The researchers showed that Viagra could alleviate fatigue in mice with mislocalized nNOS.

"The mice that have the nNOS mislocalized still have some nitric oxide signaling, but the Viagra enhances that signal by inhibiting PDE and preventing breakdown of cGMP," Campbell said.


Contact: Jennifer Brown
University of Iowa

Related biology news :

1. Childhood obesity indicates greater risk of school absenteeism, Penn study reveals
2. A study by the MUHC and McGill University opens a new door to understanding cancer
3. Study begins to reveal clues to the cause and progression of sepsis
4. Clones on task serve greater good, evolutionary study shows
5. New study warns limited carbon market puts 20 percent of tropical forest at risk
6. New study examines how rearing environment can alter navigation
7. Study links cat disease to flame retardants in furniture and to pet food
8. New continent and species discovered in Atlantic study
9. Study shows link between alcohol consumption and hiv disease progression
10. Feeling hot, hot, hot: New study suggests ways to control fever-induced seizures
11. Study finds environmental tests help predict hospital-acquired Legionnaires disease risk
Post Your Comments:
(Date:11/20/2015)... , November 20, 2015 NXTD ... focused on the growing mobile commerce market and creator ... Gino Pereira , was recently interviewed on The ... air on this weekend on Bloomberg Europe , ... . --> NXTD ) ("NXT-ID" or the ...
(Date:11/19/2015)... Calif. , Nov. 19, 2015  Based on ... Frost & Sullivan recognizes BIO-key with the 2015 Global ... Each year, Frost & Sullivan presents this award to ... line catering to the needs of the market it ... product line meets and expands on customer base demands, ...
(Date:11/19/2015)... Nov. 19, 2015  Although some 350 companies are ... by a few companies, according to Kalorama Information. These include ... of the market share of the 6.1 billion-dollar molecular ... World Market for Molecular Diagnostic s .    ... is still controlled by one company and only a ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... November 25, 2015 2 nouvelles études ... les différences entre les souches bactériennes retrouvées dans ... des êtres humains . Ces recherches  ouvrent une ... la prise en charge efficace de l,un des ... les chats .    --> 2 nouvelles ...
(Date:11/25/2015)... Studies reveal the differences in species of bacteria ... for more effective treatment for one of the most commonly ... --> --> Gum disease is one ... relatively little was understood about the bacteria associated with it ... researchers from the WALTHAM Centre for Pet Nutrition together with ...
(Date:11/25/2015)... HOLLISTON, Mass. , Nov. 25, 2015 ... a biotechnology company developing bioengineered organ implants for life-threatening ... will present at the LD Micro "Main Event" investor ... PT. The presentation will be webcast live and posted ... also be available at the conference for one-on-one meetings ...
(Date:11/25/2015)... DIEGO , Nov. 25, 2015  Neurocrine Biosciences, ... Kevin Gorman , President and CEO of Neurocrine Biosciences, ... Healthcare Conference in New York . ... to visit the website approximately 5 minutes prior to ... A replay of the presentation will be available on ...
Breaking Biology Technology: