Navigation Links
Study led by NUS scientists provides new insights into cause of human neurodegenerative disease
Date:12/18/2013

Singapore, 18 December 2013 A recent study led by scientists from the National University of Singapore (NUS) opens a possible new route for treatment of Spinal Muscular Atrophy (SMA), a devastating disease that is the most common genetic cause of infant death and also affects young adults. As there is currently no known cure for SMA, the new discovery gives a strong boost to the fight against SMA.

SMA is caused by deficiencies in the Survival Motor Neuron (SMN) gene. This gene controls the activity of various target genes. It has long been speculated that deregulation of some of these targets contributes to SMA, yet their identity remained unknown.

Using global genome analysis, the research team, led by Associate Professor Christoph Winkler of the Department of Biological Sciences at the NUS Faculty of Science and Dr Kelvin See, a former A*STAR graduate scholar in NUS who is currently a Research Fellow at the Genome Institute of Singapore (GIS), found that deficiency in the SMN gene impairs the function of the Neurexin2 gene. This in turn limits the neurotransmitter release required for the normal function of nerve cells. The degeneration of motor neurons in the spinal cord causes SMA. This is the first time that scientists establish an association between Neurexin2 and SMA.

Preliminary experimental data also showed that a restoration of Neurexin2 activity can partially recover neuron function in SMN deficient zebrafish. This indicates a possible new direction for therapy of neurodegeneration.

Collaborating with Assoc Prof Winkler and the NUS researchers are Dr S. Mathavan and his team at GIS, as well as researchers from the University of Wuerzburg in Germany. The breakthrough discovery was first published in scientific journal Human Molecular Genetics last month.

Small zebrafish provides insights into human neurodegenerative disease

SMA is a genetic disease that attacks a distinct type of nerve cells called motor neurons in the spinal cord. The disease has been found to be caused by a defect in the SMN gene, a widely used gene that is responsible for normal motor functions in the body.

To study how defects in SMN cause neuron degeneration, the scientists utilised a zebrafish model, as the small fish has a relatively simple nervous system that allows detailed imaging of neuron behaviour.

In laboratory experiments, the researchers showed when SMN activity in zebrafish was reduced to levels found in human SMA patients, Neurexin2 function was impaired. This novel disease mechanism was also discovered in other in vivo models, suggesting that it is applicable to mammals and possibly human patients.

When the scientists measured the activity of nerve cells in zebrafish using laser imaging, they found that nerve cells deficient for Neurexin2 or SMN could not be activated to the same level as healthy nerve cells. This impairment consequently led to the reduction of muscular activity. Interestingly, preliminary data showed that a restoration of Neurexin2 activity can partially recover neuron function in SMN deficient zebrafish.

Further studies

Assoc Prof Winkler, who is also with the NUS Centre for Biolmaging Sciences, explained, "These findings significantly advance our understanding of how the loss of SMN leads to neurodegeneration. A better understanding of these mechanisms will lead to novel therapeutic strategies that could aim at restoring and maintaining functions in deficient nerve cells of SMA patients."

Dr See added, "Our study provides a link between SMN deficiency and its effects on a critical gene important for neuronal function. It would be interesting to perform follow up studies in clinical samples to further investigate the role of Neurexin2 in SMA pathophysiology."

Moving forward, the team of scientists will conduct further research to determine if Neurexin2 is an exclusive mediator of SMN induced defects and hence can be used as a target for future drug designs. They hope their findings will contribute towards treatment of neurodegeneration.


'/>"/>

Contact: Carolyn Fong
carolyn@nus.edu.sg
65-651-65399
National University of Singapore
Source:Eurekalert  

Related biology news :

1. Physicians awarded $4 million to study effects of fertility treatments and obstetric care
2. Study: Moderate alcohol consumption boosts bodys immune system
3. TV ads nutritionally unhealthy for kids, study finds
4. Study finds piece-by-piece approach to emissions policies can be effective
5. Climate change will endanger caribou habitat, study says
6. Pitt study: Lung lesions of TB variable, independent whether infection is active or latent
7. Pathogen study explores blocking effect of E. coli O157:H7 protein
8. Study breaks blood-brain barriers to understanding Alzheimers
9. Disease, not climate change, fueling frog declines in the Andes, study finds
10. With new study, aquatic comb jelly floats into new evolutionary position
11. Study of rodent family tree puts brakes on commonly held understanding of evolution
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Study led by NUS scientists provides new insights into cause of human neurodegenerative disease
(Date:2/2/2016)... YORK , Feb. 2, 2016 ... of the bioinformatic market by reviewing the recent ... enabled tools that drive the field forward. Includes ... to: Identify the challenges and opportunities that ... providers and software solution developers, as well as ...
(Date:2/2/2016)... Feb. 2, 2016  Based on its recent ... Sullivan recognizes US-based Intelligent Retinal Imaging Systems (IRIS) ... Award for New Product Innovation. IRIS, a prominent ... North America , is poised to set ... diabetic retinopathy market. The IRIS technology presents superior ...
(Date:1/28/2016)... Synaptics (NASDAQ: SYNA ), a leading developer of ... ended December 31, 2015. --> ... increased 2 percent compared to the comparable quarter last year to ... was $35.0 million, or $0.93 per diluted share. ... first quarter of fiscal 2016 grew 9 percent over the prior ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... , Feb. 4, 2016  Spherix Incorporated (Nasdaq: ... fostering and monetization of intellectual property, today provided an ... in the Northern District of Texas ... Inter Partes Re-examination ("IPR") proceedings ... Office.  The IPR was initiated on only certain claims ...
(Date:2/3/2016)... SAN DIEGO , Feb. 3, 2016 /PRNewswire/ ... medicine company with the first pluripotent stem cell-derived ... 1 diabetes in clinical-stage development, today announced that ... Janssen Pharmaceutical Companies of Johnson & Johnson, have ... BetaLogics group into ViaCyte.  The agreement provides ViaCyte ...
(Date:2/3/2016)... NEW BRUNSWICK, N.J. , Feb. 3, 2016 ... 30 grants totaling more than $1 million for ... who are working on health-related research that demonstrates ... , this round of funding for the New ... available for faculty members at these educational institutions— ...
(Date:2/3/2016)... 2016  Silk Therapeutics, Inc., today announced the closing of ... now raised a total of $10.25 million in Series A ... Series A2 round was led by existing investor The Kraft ... from new investors Lear Corporation and Highland Consumer Partners, as ... ; Richard Sackler , MD, with Summer Road, LLC; ...
Breaking Biology Technology: