Navigation Links
Study identifies how muscles are paralyzed during sleep
Date:7/11/2012

TORONTO, ON Two powerful brain chemical systems work together to paralyze skeletal muscles during rapid eye movement (REM) sleep, according to new research in the July 11 issue of The Journal of Neuroscience. The finding may help scientists better understand and treat sleep disorders, including narcolepsy, tooth grinding, and REM sleep behavior disorder.

During REM sleep the deep sleep where most recalled dreams occur your eyes continue to move but the rest of the body's muscles are stopped, potentially to prevent injury. In a series of experiments, University of Toronto neuroscientists Patricia L. Brooks and John H. Peever, PhD, found that the neurotransmitters gamma-aminobutyric acid (GABA) and glycine caused REM sleep paralysis in rats by "switching off" the specialized cells in the brain that allow muscles to be active. This finding reversed earlier beliefs that glycine was a lone inhibitor of these motor neurons.

"The study's findings are relevant to anyone who has ever watched a sleeping pet twitch, gotten kicked by a bed partner, or has known someone with the sleep disorder narcolepsy," said Dennis J. McGinty, PhD, a behavioral neuroscientist and sleep researcher at the University of California, Los Angeles, who was not involved in the study. "By identifying the neurotransmitters and receptors involved in sleep-related paralysis, this study points us to possible molecular targets for developing treatments for sleep-related motor disorders, which can often be debilitating," he said

The researchers measured electrical activity in the facial muscles responsible for chewing of sleeping rats. Brain cells called trigeminal motor neurons communicate the brain's message to move to these muscles. Previous research suggested neurotransmitter receptors called ionotropic GABAA/glycine receptors in the motor neurons caused REM sleep paralysis. However, when the researchers blocked these receptors, REM sleep paralysis still occurred.

The researchers found that to prevent REM sleep paralysis, they had to block both the ionotropic receptors and metabotropic GABAB receptors, a different receptor system. In other words, when the motor cells were cut off from all sources of GABA and glycine, the paralysis did not occur, allowing the rats to exhibit high levels of muscle activity when their muscles should have been inactive. The data suggest the two neurotransmitters must both be present together to maintain motor control during sleep, rather than working separately.

The finding could be especially helpful for those with REM sleep disorder, a disease that causes people to act out their dreams. This can cause serious injuries to patients and others around them. It is also often an early indicator of neurodegenerative diseases, such as Parkinson's.

"Understanding the precise mechanism behind these chemicals' role in REM sleep disorder is particularly important because about 80 percent of people who have it eventually develop a neurodegenerative disease, such as Parkinson's disease," study author Peever added. "REM sleep behavior disorder could be an early marker of these diseases, and curing it may help prevent or even stop their development," he said.


'/>"/>
Contact: Michael Kennedy
m.kennedy@utoronto.ca
416-946-5025
University of Toronto
Source:Eurekalert

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. Law that regulates shark fishery is too liberal: UBC study
3. New study will help protect vulnerable birds from impacts of climate change
4. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
5. BYU study: Using a gun in bear encounters doesnt make you safer
6. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
7. Pycnogenol (French maritime pine bark extract) shown to improve menopause symptoms in new study
8. Crystal structure of archael chromatin clarified in new study
9. EU-funded study underlines importance of Congo Basin for global climate and biodiversity
10. University of Houston study shows BP oil spill hurt marshes, but recovery possible
11. Study demonstrates cells can acquire new functions through transcriptional regulatory network
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
(Date:4/3/2017)... , April 3, 2017  Data ... precision engineering platform, detected a statistically significant ... product prior to treatment and objective response ... the potential to predict whether cancer patients ... to treatment, as well as to improve ...
(Date:3/29/2017)... , March 29, 2017  higi, the health IT ... North America , today announced a ... the acquisition of EveryMove. The new investment and acquisition ... of tools to transform population health activities through the ... data. higi collects and secures data today ...
Breaking Biology News(10 mins):
(Date:6/19/2017)... ... 2017 , ... Tunnell Consulting has been solving the most complex ... challenges faced by life sciences, biotech and pharmaceuticals companies today is in interpreting the ... , who is well known in the industry and brings significant high-level expertise to ...
(Date:6/16/2017)... , ... June 16, 2017 , ... CTNext , ... Innovation Awards (EIA), held at The LOFT at Chelsea Piers in Stamford. , Nine ... to a panel of judges for an opportunity to secure $10,000 awards to help ...
(Date:6/15/2017)... ... 15, 2017 , ... angelMD announced the closure of a ... angelMD’s SVP of Corporate Development, served as the syndicate leader for this first ... Saranas’ recently announced $4 million Series B financing round. , Saranas is working ...
(Date:6/14/2017)... ... June 14, 2017 , ... The Thailand Board ... announces that they’re co-hosting a delegation from Thailand at BIO 2017 in San ... industry gathering in the world, regroups more than 1,100 biotech companies, academic institutions, ...
Breaking Biology Technology: