Navigation Links
Study finds widespread stream biodiversity declines at low levels of urban development
Date:6/8/2011

A new study from biology researchers at Baylor University and the University of Maryland-Baltimore has found that there are consistent and widespread declines in stream biodiversity at lower levels of urban development more damaging than what was previously believed.

The study found that aquatic life actually shows significant loss of biodiversity with less than two percent of developed land in a watershed. This is much less that what a decade-old analysis widely cited by environmental policymakers suggests that it takes up to 15 percent of solid surfaces like roads or parking lots, or 20 to 30 percent developed land in a given area before local water systems no longer sustain normal aquatic life.

"The findings are alarming and imply that water quality in streams is degraded rapidly with relatively low levels of development, which clearly has significant implications to the organisms that live in these streams," said study co-author Dr. Ryan King, associate professor of biology at Baylor. "Perhaps of even greater concern is that the decline of stream-dwelling animals implies that there is chemical pollution that could also be detrimental to human health via groundwater and downstream drinking water supplies. It is unlikely that it's just the rapid runoff of water from the impervious cover that is causing the loss of biodiversity, but more likely that chemical pollution is also responsible."

The researchers used samples from about 2,000 streams around Maryland and compared satellite imagery and land cover datasets to analyze how the water ecosystem and biodiversity responded to various levels of impervious cover, which are areas where infiltration of water into the underlying soil is prevented. Roads, parking lots and buildings account for the majority of impervious cover.

Published research in recent years has consistently shown a strong relationship between the percentage of impervious cover in a watershed and the health of the receiving stream. Scientists generally agree that stream degradation consistently occurs at relatively low levels of imperviousness, such as 10 to 20 percent. However, when King and his research team applied a new statistical analysis method that they created called the Threshold Indicator Taxa Analysis (TITAN), it showed biodiversity loss at much lower development levels in the study area. In fact, the analysis showed that approximately 80 percent of the biodiversity loss came between .5 and two percent of impervious cover, and the remaining 20 percent of loss came between two and 25 percent.

"This new statistical analysis method is more precise than current methods and when we applied it to real world environments, it revealed a dramatically lower ecological 'tipping point' at which species are threatened," King said. "The implications of these findings are very important in water management strategies."


'/>"/>

Contact: Matt Pene
Matt_Pene@baylor.edu
254-710-4656
Baylor University
Source:Eurekalert

Related biology news :

1. Environmental engineering students and faculty study Passaic River pollution
2. Finnish twin study yields new information on how fat cells cope with obesity
3. Smithsonian study: Stranding records are faithful reflection of live whale and dolphin populations
4. Pregnant women can prevent excess weight gain with simple steps, study finds
5. University of Arizona awarded $2.95 million to study monsoon ecology
6. Wayne State to study the role of vitamin D in African-Americans with high blood pressure
7. Study reveals how high-fat diet during pregnancy increases risk of stillbirth
8. Study finds copper proves effective against new E. coli strains
9. Farmer networks hold key to agricultural innovation in developing countries, Stanford study finds
10. Study finds greenhouse gas reduction strategy may be safe for soil animals
11. Blueberrys effects on cholesterol examined in lab animal study
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market ... Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast ... from USD 14.30 Billion in 2017 to USD 31.75 Billion by 2022, ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... NXT-ID, Inc. (NASDAQ:   NXTD ) ... appointment of independent Directors Mr. Robin D. Richards ... Directors, furthering the company,s corporate governance and expertise. ... Gino Pereira , Chief Executive ... their guidance and benefiting from their considerable expertise as we ...
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... anticipated to expand at a CAGR of 25.76% during ... diseases is the primary factor for the growth of ... report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global ... product, technology, application, and geography. The stem cell market ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... 2017 , ... Disappearing forests and increased emissions are the main causes of ... year. Especially those living in larger cities are affected by air pollution related diseases. ... most pollution-affected countries globally - decided to take action. , “I knew I had ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights ... (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital ...
(Date:10/10/2017)... SANTA CRUZ, Calif. , Oct. 10, 2017 /PRNewswire/ ... SBIR grant from the NIH to develop RealSeq®-SC (Single ... preparation kit for profiling small RNAs (including microRNAs) from ... Cell Analysis Program highlights the need to accelerate development ... "New techniques for ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer television series will ... American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With global population estimates ... of how to continue to feed a growing nation. At the same time, many ...
Breaking Biology Technology: