Navigation Links
Study finds therapies using induced pluripotent stem cells could encounter immune rejection problems

Biologists at UC San Diego have discovered that an important class of stem cells known as "induced pluripotent stem cells," or iPSCs, derived from an individual's own cells, could face immune rejection problems if they are used in future stem cell therapies.

In today's advance online issue of the journal Nature, the researchers report the first clear evidence of immune system rejection of cells derived from autologous iPSCs that can be differentiated into a wide variety of cell types.

Because iPSCs are not derived from embryonic tissue and are not subject to the federal restrictions that limit the use of embryonic stem cells, researchers regard them as a promising means to develop stem cell therapies. And because iPSCs are derived from an individual's own cells, many scientists had assumed that these stem cells would not be recognized by the immune system. As a consequence, the immune system would not try to mount an attack to purge them from the body.

In fact, scientists regarded iPSCs as particularly attractive candidates for clinical use because cells derived from embryonic stem cells will induce immune system rejection that requires physicians to administer immune suppressant medications that can compromise a person's overall health.

But the UCSD biologists, funded by NIH and an early translational grant from the California Institute for Regenerative Medicine, the state's stem-cell funding agency, found that iPSCs are subject to some of the same problems of immune system rejection as embryonic stem cells.

"The assumption that cells derived from iPSCs are totally immune tolerant has to be reevaluated before considering human trials," says Yang Xu, a professor of biology at UCSD who headed the team that published the study.

His team of biologistswhich included postdoctoral researchers Tongbiao Zhao, Zhen-Ning Zhang and Zhili Rongreached that conclusion after testing the immune response of an inbred strain of mice to embryonic stem cells and several types of iPSCs derived from the same strain of inbred mice.

The scientists found, not surprisingly, that the immune system of one mouse could not recognize the cells derived from embryonic stem cells of the same strain of mice. But the experiments also showed that the immune system rejected cells derived from iPSCs reprogrammed from fibroblasts of the same strain of mice, mimicking the situation whereby a patient would be treated with cells derived from iPSCs reprogrammed from the patient's own cells. The scientists also found that the abnormal gene expression during the differentiation of iPSCs causes the immune responses.

"This result doesn't suggest that iPSCs cannot be used clinically," says Xu. "It is important now to look at exactly what types of cells derived from iPSCsand there probably are not that many based on our findingsare likely to generate immune system rejection."

"Our immune response assay is a robust method for checking the immune tolerance, and therefore, the safety of iPSC that may be developed," he added.

With grants from the California Institute for Regenerative Medicine, Xu's team is also developing strategies to minimize the formation of tumors that result from the use of human embryonic stem cells and to increase the immune tolerance of human embryonic stem cells.


Contact: Kim McDonald
University of California - San Diego

Related biology news :

1. Oregon Farm to School bill would benefit health through job creation, study finds
2. Study shows evolutionary adaptations can be reversed, but rarely
3. MIT Study: conventional fossil fuels sometimes greener than biofuels
4. Clemson University institute to study vertical farming feasibility in Charleston, S.C.
5. Study: Pace of brain development still strong in late teens
6. WSU study expands time window for facial nerve rehabilitation
7. iPhone can diagnose stroke: study
8. Study probes sources of Mississippi River phosphorus
9. BC scientists link to European Consortium studying human genome
10. Study shows corn gene provides resistance to multiple diseases
11. UF study finds cats No. 1 predator to urban mockingbird nests
Post Your Comments:
(Date:4/13/2016)... CHICAGO , April 13, 2016  IMPOWER physicians ... are setting a new clinical standard in telehealth ... By leveraging the higi platform, IMPOWER patients can ... weight, pulse and body mass index, and, when they ... quick and convenient visit to a local retail location ...
(Date:3/31/2016)... -- Genomics firm Nabsys has completed a financial  restructuring under ... M.D., who returned to the company in October 2015. ... including Chief Technology Officer, John Oliver , Ph.D., ... Vice President of Software and Informatics, Michael Kaiser ... Bready served as CEO of Nabsys from 2005-2014 and ...
(Date:3/23/2016)... March 23, 2016 ... Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender Anbieter ... Unternehmen mit SpeechPro zusammenarbeitet, um erstmals dessen ... wird die Möglichkeit angeboten, im Rahmen mobiler ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 Apellis Pharmaceuticals, ... 1 clinical trials of its complement C3 inhibitor, ... and multiple ascending dose studies designed to assess ... of subcutaneous injection in healthy adult volunteers. ... either as a single dose (ranging from 45 ...
(Date:6/23/2016)... On Wednesday, June 22, 2016, the NASDAQ Composite ... Jones Industrial Average edged 0.27% lower to finish at 17,780.83; ... has initiated coverage on the following equities: Infinity Pharmaceuticals Inc. ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ARLZ ), ... more about these stocks by accessing their free trade alerts ...
(Date:6/23/2016)... Connecticut (PRWEB) , ... June 23, 2016 , ... ... introduce a new line of intelligent tools designed, tuned and optimized exclusively for ... September 12–17 in Chicago. The result of a collaboration among several companies with ...
(Date:6/22/2016)... , June 22, 2016 Cell Applications, ... allow them to produce up to one billion ... lot within one week. These high-quality, consistent stem ... preparing cells and spend more time doing meaningful, ... a proprietary, high-volume manufacturing process that produces affordable, ...
Breaking Biology Technology: