Navigation Links
Study finds new vulnerability in malaria parasite

NEW YORK, NY (November 27, 2013) An international team of scientists, including researchers at Columbia University Medical Center (CUMC), has identified a key metabolic enzyme that common malaria parasites require for survival at each stage of infection in humans. The findings raise the possibility of a new approach to combating malaria, one of the world's deadliest diseases. The study was published today in the online edition of the journal Nature.

"Perhaps the most exciting aspect of our findings is that this enzyme is required at all stages of the parasites' life cycle in humans," said co-first author Marcus C.S. Lee, PhD, associate research scientist in microbiology & immunology at CUMC. "This is important because most antimalarials are effective at killing the parasites only as they circulate in the bloodstream. However, the parasites can hide in the liver for years before reemerging and triggering a relapse of the disease. By identifying this enzyme, we may be able to develop a new way to kill the parasites in their dormant stage."

The other co-first author is Case W. McNamara, PhD, research investigator at the Genomics Institute for the Novartis Research Foundation. The study leaders are Elizabeth A. Winzeler, PhD, professor of pharmacology and drug discovery at University of California San Diego, and Thierry Diagana, head of Novartis Institute for Tropical Diseases in Singapore.

The enzyme phosphatidylinositol 4-kinase (PI4K) was found by screening more than a million drug compounds against Plasmodium falciparum, the parasite responsible for the most lethal form of malaria. Using this screen, the researchers found a class of compounds known as imidazopyrazines, which are capable of killing several species of Plasmodium at each stage of the parasites' life cycle in its vertebrate host. Also important, the compounds had no effect on human cells.

The researchers identified the target of the imidazopyrazines by evolving parasite cell lines that were resistant against the drugs and then analyzing the parasites' genomes for the changes responsible for conferring resistance. Those genetic changes pointed to the gene that encodes PI4K.

The CUMC team, led by David Fidock, PhD, professor of microbiology & immunology and medical sciences (in medicine), used novel genetic tools to confirm that PI4K was being directly targeted by the imidazopyrazines.

Then, using cellular imaging, the CUMC team found that imidazopyrazines interfere with the function of PI4K on the parasite Golgi (the organelle that packages proteins for delivery to other cellular destinations). "We think that disrupting the function of PI4K at the Golgi stops the parasite from making new membranes around its daughter cells, thereby preventing the organism from reproducing," said Dr. Lee.

Because PI4K is also found in humans, Dr. Winzeler said, the next challenge is to develop a drug that retains selectivity between the parasite and human versions of the enzyme. "As we now know the identity of this protein and hope to soon solve its structure, this task should be much easier," she said.


Contact: Karin Eskenazi
Columbia University Medical Center

Related biology news :

1. Study finds the forgotten ape threatened by human activity and forest loss
2. Large study shows pollution impact on coral reefs -- and offers solution
3. CSI-type study identifies snakehead
4. Study examines potential evolutionary role of sexual regret in human survival and reproduction
5. Gene-silencing study finds new targets for Parkinsons disease
6. New genomic study provides a glimpse of how whales could adapt to ocean
7. Study finds gene network associated with alcohol dependence
8. A study on cell migration provides insights into the movement of cancer cells
9. UT Dallas study: Initial success for new tinnitus treatment
10. Connections in the brains of young children strengthen during sleep, CU-Boulder study finds
11. Women prescribed combination HRT should use caution when taking apigenin supplement, MU study finds
Post Your Comments:
Related Image:
Study finds new vulnerability in malaria parasite
(Date:10/29/2015)... Calif. , Oct. 29, 2015  The J. ... new report titled, "DNA Synthesis and Biosecurity: Lessons Learned ... the Department of Health and Human Services guidance for ... in 2010. --> ... it also has the potential to pose unique biosecurity ...
(Date:10/29/2015)... , Oct. 29, 2015  Connected health pioneer, ... driving the explosion of technology-enabled health and wellness, and ... new book, The Internet of Healthy Things ... sensors or smartphones even existed, Dr. Kvedar, vice president, ... of health care delivery, moving care from the hospital ...
(Date:10/27/2015)... , Oct. 27, 2015 In the present ... of concern for various industry verticals such as banking, ... to the growing demand for secure & simplified access ... ,sectors, such as hacking of bank accounts, misuse of ... equipment such as PC,s, laptops, and smartphones are expected ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... , Dec. 1, 2015  CardioCell LLC, a ... stem cells for cardiovascular indications, intends to proceed ... based on recommendations from a Heart Failure Advisory ... Scientific Advisory Board members . In a ... Phase IIa safety and efficacy data from CardioCell,s ...
(Date:12/1/2015)... ... December 01, 2015 , ... ... backed, age-defying products, is featured as the cover story and throughout Success ... unrivaled opportunities that Nerium provides. Success from Home magazine routinely features successful ...
(Date:12/1/2015)... -- Dr. Harry Lander , President of Regen, expands ... Science Officer and recruits five distinguished scientists to ... President of Regen, expands his role to include ... five distinguished scientists to join advisory team --> ... include serving as Chief Science Officer ...
(Date:12/1/2015)... , December 1, 2015 ... addition of the  "2016 U.K. Virology and ... Forecasts for 100 Tests, Supplier Shares by ...  report to their offering.  --> ... the  "2016 U.K. Virology and Bacteriology Testing ...
Breaking Biology Technology: