Navigation Links
Study finds new relationship between gene duplication and alternative splicing in plants
Date:12/7/2009

Athens, Ga. University of Georgia scientists looking to understand the genetic mechanisms of plant defense and growth have found for the first time in plants an inverse relationship between gene duplication and alternative splicing. The finding has implications for diversity not only in plants, but in animals and humans.

The research will be published online in this week's Proceedings of the National Academy of Sciences.

"This inverse relationship has been previously reported in animals," said University of Georgia professor and senior author Chung-Jui Tsai. "And in animal genes, when there's a single copy, more often than not you see a higher degree of alternative splicing."

Alternative splicing is the molecular process that allows a single gene to produce many gene products or proteins with potentially different functions. It is an important regulatory mechanism for determining diversity in all plants and animals.

Tsai is W.N. Haynes Professor and Georgia Research Alliance Eminent Scholar, Warnell School of Forestry and Natural Resources, and professor of genetics, Franklin College of Arts and Sciences, at UGA.

Tsai's team set out to investigate the role of a gene that encodes for the enzyme isochorismate synthase (ICS), which has two distinct functions: synthesis of vitamin K for photosynthesis, the conversion of light to energy, and synthesis of salicylic acid, an aspirin-like compound found naturally in most plants that is important for their resistance to diseases. In Arabidopsis, a tiny flowering annual plant that is widely used as a model organism for studying plants, salicylic acid is derived primarily from ICS. The investigators wanted to know the role of the ICS gene in fast-growing and economically important Populus tree species.

The PNAS authors took their cues from Arabidopsis. In this tiny weed, there are two copies of the ICS gene, while there is only one copy of the gene in Populus.

When subjected to stresses, the tiny Arabidopsis plant did what was expected: It produced normal stress-fighting proteins, but from only one of the ICS duplicates. However, the single copy ICS gene in Populus spontaneously produced a mixture of the normal and alternative forms of gene product in equal proportions, and it did not respond to stresses.

Tsai said, "We asked, 'Does the ICS gene behave differently by chance? Or does it reflect something about how disease resistance is controlled in different kinds of plants?'"

Following the discovery of extensive alternative splicing in the Populus ICS gene, the researchers inserted the Populus ICS gene into an Arabidopsis mutant that lacked the stress-fighting ICS copy. The UGA-led research team found that the Populus ICS gene could not be correctly spliced at all in the foreign Arabidopsis host and could not restore the weed's ability to produce salicylic acid.

Tsai explained, "When the correctly spliced Populus ICS gene was inserted, it worked as expected in Arabidopsis. This suggested that some of the signal recognition for splicing is not in the weed any more."

Tsai's research found that in Arabidopsis one of the ICS genes has been recruited for defense. "When these species get attacked, it's important for them to respond quickly and massively using a dedicated ICS gene."

In contrast, Tsai said, woody perennial trees like Populus, which face environmental stress throughout their long lifetimes, have evolved other pathways to synthesize salicylic acid and other chemicals for "constitutive" defense meaning these compounds are produced all the time and the primary ICS gene function is photosynthesis.

Tsai concluded, "The gene duplication and alternative splicing of Arabidopsis and Populus reflect their distinct defense strategies."

But the major finding of the research the relationship between gene copy number, gene sequence and how splicing may have contributed to gene evolution is what Tsai finds most exciting.

"Sometimes people compare the gene count between the weeds and trees to try to understand what makes a tree a tree. But it's not the gene number that's significant. The tiny weed has approximately 27,000 genes, and Populus has 35,000 to 40,000 genes it's not that different." Tsai's research shows that it is also how a gene is regulated that contributes to the difference.


'/>"/>

Contact: Sam Fahmy
sfahmy@uga.edu
706-542-5361
University of Georgia
Source:Eurekalert  

Related biology news :

1. Childhood obesity indicates greater risk of school absenteeism, Penn study reveals
2. A study by the MUHC and McGill University opens a new door to understanding cancer
3. Study begins to reveal clues to the cause and progression of sepsis
4. Clones on task serve greater good, evolutionary study shows
5. New study warns limited carbon market puts 20 percent of tropical forest at risk
6. New study examines how rearing environment can alter navigation
7. Study links cat disease to flame retardants in furniture and to pet food
8. New continent and species discovered in Atlantic study
9. Study shows link between alcohol consumption and hiv disease progression
10. Feeling hot, hot, hot: New study suggests ways to control fever-induced seizures
11. Study finds environmental tests help predict hospital-acquired Legionnaires disease risk
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Study finds new relationship between gene duplication and alternative splicing in plants
(Date:6/22/2016)... LOS ANGELES , June 22, 2016 ... of identity management and verification solutions, has ... cutting edge software solutions for Visitor Management, ... ® provides products that add functional ... The partnership provides corporations and venues with ...
(Date:6/15/2016)... New York , June 15, 2016 /PRNewswire/ ... a new market report titled "Gesture Recognition Market by ... and Forecast, 2016 - 2024". According to the report, ... USD 11.60 billion in 2015 and is estimated ... reach USD 48.56 billion by 2024.  ...
(Date:6/2/2016)... -- The Department of Transport Management (DOTM) of ... US Dollar project, for the , Supply and ... and IT Infrastructure , to Decatur ... of Identity Management Solutions. Numerous renowned international vendors participated in ... was selected for the most compliant and innovative solution. ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... Nov. 30, 2016 /PRNewswire/ - Portage Biotech Inc. ("Portage" ... PBT.U), is excited to announce the formation of ... developing preclinical ophthalmology assets through proof of concept. ... created by Portage Pharmaceuticals Limited and being developed ... surface and anterior segment diseases. This agent has ...
(Date:11/30/2016)... 30, 2016  Tempus, a technology company focused ... Penn,s Abramson Cancer Center have partnered to better ... to immunotherapy treatment based on next generation genomic ... of a research collaboration, Tempus will provide sequencing ... patient data to Penn. Utilizing next-generation sequencing, machine ...
(Date:11/30/2016)...   Merck , a leading science and technology ... set of agreements with Evotec AG, whereby Evotec AG ... reagents such as CRISPR and shRNA libraries. Combining access ... accelerated pathway to explore and identify new drug targets. ... new targets, a process that can be time- and ...
(Date:11/30/2016)... Triangle Park, North Carolina (PRWEB) , ... November 30, 2016 , ... ... (IUPAC) approved the names and symbols for four elements: nihonium (Nh), moscovium (Mc), ... Following a 5-month period of public review, the names earlier proposed by the discoverers ...
Breaking Biology Technology: