Navigation Links
Study finds axon regeneration after Schwann cell graft to injured spinal cord
Date:12/23/2013

Putnam Valley, NY. (Dec. 23 2013) A study carried out at the University of Miami Miller School of Medicine for "The Miami Project to Cure Paralysis" has found that transplanting self-donated Schwann cells (SCs, the principal ensheathing cells of the nervous system) that are elongated so as to bridge scar tissue in the injured spinal cord, aids hind limb functional recovery in rats modeled with spinal cord injury.

The study will be published in a future issue of Cell Transplantation but is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-ct1074Williams.

"Injury to the spinal cord results in scar and cavity formation at the lesion site," explains study corresponding author Dr. Mary Bartlett Bunge of the University of Miami Miller School of Medicine. "Although numerous cell transplantation strategies have been developed to nullify the lesion environment, scar tissue - in basil lamina sheets - wall off the lesion to prevent further injury and, also, at the interface, scar tissue impedes axon regeneration into and out of the grafts, limiting functional recovery."

The researchers determined that the properties of a spinal cord/Schwann cell bridge interface enable regenerated and elongated brainstem axons to cross the bridge and potentially lead to an improvement in hind limb movement of rats with spinal cord injury.

Electron microscopy revealed that axons, SCs, and astrocytes were enclosed together within tunnels bounded by continuous basal lamina. The expression of neuroglycan (NG2; a proteoglycan found on the membrane of cells) was associated with these tunnels. They subsequently determined that a "trio" of astrocyte processes, SCs and regenerating axons were "bundled" together within the tunnels of basal lamina.

"Elongation of astrocyte processes across transplant interfaces likely establishes three-dimensional structures that determine how regenerating axons become exposed to myriad growth-promoting and inhibitory cues," wrote the researchers. The researchers also noted that it was important to understand conditions that favor astrocytes to be permissive for axonal growth into lesion transplants.

"We demonstrated that the elongation of astrocyte processes into SC transplants, and the formation of NG2+ tunnels, enables brainstem axon regeneration and improvement in function," they concluded. "This study supports the clinical use of SCs for SCI repair and defines important characteristics of permissive spinal cord/graft interfaces."

"Developing the means to bridge the glial scar following chronic spinal cord injury is one of the major stumbling blocks of therapy" said Dr. John Sladek, Cell Transplantation section editor and professor of neurology and pediatrics at the University of Colorado School of Medicine. "This study provides important new insight into how this may be achieved".


'/>"/>

Contact: Robert Miranda
cogcomm@aol.com
Cell Transplantation Center of Excellence for Aging and Brain Repair
Source:Eurekalert

Related biology news :

1. Slippery bark protects trees from pine beetle attack, according to CU-Boulder study
2. Study offers clues to how plants evolved to cope with cold
3. Study shows Where Alzheimers starts and how it spreads
4. Study: Some plants may not adapt quickly to future climate change
5. Wayne State cholesterol study shows algal extracts may counter effects of high fat diets
6. Nutrition influences metabolism through circadian rhythms, UCI study finds
7. With sinus study, Saint Louis University researchers find that harmless members of microbiome spark immune reaction
8. Deepwater Horizon NRDA study shows possible oil impact on dolphins
9. New study reveals the biomechanics of how marine snail larvae swim
10. Study finds Catalina Island Conservancy contraception program effectively manages bison population
11. Study led by NUS scientists provides new insights into cause of human neurodegenerative disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/29/2017)... 2017  higi, the health IT company that operates ... America , today announced a Series B investment ... EveryMove. The new investment and acquisition accelerates higi,s strategy ... transform population health activities through the collection and workflow ... higi collects and secures data today on behalf of ...
(Date:3/28/2017)... , March 28, 2017 ... Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video ... and Region - Global Forecast to 2022", published by ... in 2016 and is projected to reach USD 75.64 ... 2017 and 2022. The base year considered for the ...
(Date:3/27/2017)... , March 27, 2017  Catholic Health Services ... Management Systems Society (HIMSS) Analytics for achieving Stage ... Model sm . In addition, CHS previously earned ... hospitals using an electronic medical record (EMR). ... high level of EMR usage in an outpatient ...
Breaking Biology News(10 mins):
(Date:3/29/2017)... ... March 29, 2017 , ... Zansors announced today ... as issued by the U.S. Patent & Trademark Office (USPTO). The patent covers ... and health monitoring. This invention will be critical to the future of wearable ...
(Date:3/29/2017)... ... March 29, 2017 , ... ... dedicated to finding cures for inflammatory bowel diseases (IBD), and ReachMD , ... deliver exclusive content to ReachMD learners. , The partnership, which launched in ...
(Date:3/29/2017)... OF PRUSSIA, Pa. , March 29, 2017 /PRNewswire/ ... to care, which is why CSL Behring awards Local ... work of rare disease patient groups. These groups tackle ... voices are heard on Capitol Hill and in statehouses ... funding cycle, the community-based grant was awarded to New ...
(Date:3/29/2017)... Inc. (NASDAQ: VRML), a bio-analytical solutions company focused ... the fourth quarter and full year ended December ... year for us with our first clinical utility ... reimbursement progress with Medicare, positive medical policy coverage ... cleared our 2 nd generation product Overa ...
Breaking Biology Technology: