Navigation Links
Study critiques corn-for-ethanol's carbon footprint

DURHAM, N.C. -- To avoid creating greenhouse gases, it makes more sense using today's technology to leave land unfarmed in conservation reserves than to plow it up for corn to make biofuel, according to a comprehensive Duke University-led study.

"Converting set-asides to corn-ethanol production is an inefficient and expensive greenhouse gas mitigation policy that should not be encouraged until ethanol-production technologies improve," the study's authors reported in the March edition of the research journal Ecological Applications.

Nevertheless, farmers and producers are already receiving federal subsidies to grow more corn for ethanol under the Energy Independence and Security Act of 2007.

"One of our take-home messages is that conservation programs are currently a cheaper and more efficient greenhouse gas policy for taxpayers than corn-ethanol production," said biologist Robert Jackson, the Nicholas Professor of Global Environmental Change at Duke's Nicholas School of the Environment, who led the study.

Making ethanol from corn reduces atmospheric releases of the greenhouse gas carbon dioxide because the CO2 emitted when the ethanol burns is "canceled out" by the carbon dioxide taken in by the next crop of growing plants, which use it in photosynthesis. That means equivalent amounts of carbon dioxide are removed from the atmosphere and "fixed" into plant tissues.

But the study notes that some CO2 not counterbalanced by plant carbon uptake gets released when corn is grown and processed for ethanol. Furthermore, ethanol contains only about 70 percent of gasoline's energy.

"So we actually reduce greenhouse gas emissions only 20 percent when we substitute one liter of ethanol for one liter of gasoline," said Gervasio Pieiro, the study's first author, who is a Buenos Aires, Argentina-based scientist and postdoctoral research associate in Jackson's Duke laboratory.

Also, by the researchers' accounting, the carbon benefits of using ethanol only begin to show up years after corn growing begins. "Depending on prior land use" they wrote in their report, "our analysis shows that carbon releases from the soil after planting corn for ethanol may in some cases completely offset carbon gains attributed to biofuel generation for at least 50 years."

The report said that "cellulosic" species -- such as switchgrass -- are a better option for curbing emissions than corn because they don't require annual replowing and planting. In contrast, a single planting of cellulosic species will continue growing and producing for years while trapping more carbon in the soil.

"Until cellulosic ethanol production is feasible, or corn-ethanol technology improves, corn-ethanol subsidies are a poor investment economically and environmentally," Jackson added.

However, the report noted that a cost-effective technology to convert cellulosics to ethanol may be years away. So the Duke team contrasted today's production practices for corn-based ethanol with what will be possible after the year 2023 for cellulosic-based ethanol.

By analyzing 142 different soil studies, the researchers found that conventional corn farming can remove 30 to 50 percent of the carbon stored in the soil. In contrast, cellulosic ethanol production entails mowing plants as they grow -- often on land that is already in conservation reserve. That, their analysis found, can ultimately increase soil carbon levels between 30 to 50 percent instead of reducing them.

"It's like hay baling," Pieiro said. "You plant it once and it stays there for 20 years. And it takes much less energy and carbon dioxide emissions to produce that than to produce corn."

As part of its analysis, the Duke team calculated how corn-for-ethanol and cellulosic-for-ethanol production -- both now and in the future -- would compare with agricultural set-asides. Those comparisons were expressed in economic terms with a standard financial accounting tool called "net present value."

For now, setting aside acreage and letting it return to native vegetation was rated the best way to reduce greenhouse gas emissions, outweighing the results of corn-ethanol production over the first 48 years. However, "once commercially available, cellulosic ethanol produced in set-aside grasslands should provide the most efficient tool for greenhouse gas reduction of any scenario we examined," the report added.

The worst strategy for reducing carbon dioxide emissions is to plant corn-for-ethanol on land that was previously designated as set aside -- a practice included in current federal efforts to ramp up biofuel production, the study found. "You will lose a lot of soil carbon, which will escape into the atmosphere as CO2," said Pieiro.


Contact: Monte Basgall
Duke University

Related biology news :

1. Study predicts when invasive species can travel more readily by air
2. Study to evaluate success of parental involvement in early childhood education
3. Building strong bones: Running may provide more benefits than resistance training, MU study finds
4. Organizational Change Management for Sustainability: The Harvard Case Study
5. Long-term study of orchard ground cover management systems
6. EPA to study Puerto Rico waters and marine habitat
7. Study finds hemlock trees dying rapidly, affecting forest carbon cycle
8. Evolutionary biologist will study HIV with grant from AIDS research foundation
9. Study examining role of genetics and environment in type 1 diabetes
10. UNH researchers studying spiny dogfish, Gulf of Maines mini shark
11. Lower increases in global temps could lead to greater impacts than previously thought, study finds
Post Your Comments:
(Date:10/29/2015)... Mich. , Oct. 29, 2015  Rubicon ... Genomics for U.S. distribution of its DNA library ... kit and Rubicon,s new ThruPLEX Plasma-seq kit. ThruPLEX ... enable the preparation of NGS libraries for liquid ... for diagnostic and prognostic applications in cancer and ...
(Date:10/27/2015)... 27, 2015 In the present market scenario, ... for various industry verticals such as banking, healthcare, defense, ... growing demand for secure & simplified access control and ... as hacking of bank accounts, misuse of users, , ... as PC,s, laptops, and smartphones are expected to provide ...
(Date:10/26/2015)... PALO ALTO, Calif. and LAS ... – Nok Nok Labs , an innovator in ... FIDO Alliance , today announced the launch of its ... the first unified platform enabling organizations to use standards-based ... authentication. The Nok Nok S3 Authentication Suite is ideal ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. ... IIROC on behalf of the Toronto Stock Exchange, confirms ... there are no corporate developments that would cause the ... --> --> About Aeterna Zentaris ... . --> Aeterna Zentaris is a specialty ...
(Date:11/24/2015)... , ... November 24, 2015 , ... The Academy of ... Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person ... few years. Many AMA members have embraced this type of racing and several new ...
(Date:11/24/2015)... 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) ... remaining 11,000 post-share consolidation (or 1,100,000 pre-share consolidation) ... B Warrants") subject to the previously disclosed November ... 2015, which will result in the issuance of ... the issuance of such shares, there will be ...
(Date:11/24/2015)... ... November 24, 2015 , ... Creation Technologies ... being named to Deloitte's 2015 Technology Fast 500 list of the fastest growing ... a FDA-cleared, Class II medical device that speeds up orthodontic tooth movement by ...
Breaking Biology Technology: