Navigation Links
Study a step toward disease-resistant crops, sustainability

WEST LAFAYETTE, Ind. - A five-year study that could help increase disease resistance, stress tolerance and plant yields is under way at Purdue University.

The $4 million project uses a new technique called "mutant-assisted gene identification and characterization," or MAGIC, to identify potentially useful gene combinations in crop species.

"If we can understand these genes better, we could engineer plants to be immune to most diseases," said principal investigator Guri Johal, an associate professor of botany and plant pathology.

First using the corn genome, the method will add to the collection of useful alleles, or pairs of genes, that create certain traits. This will improve crop gene diversity, a quality that dwindles as crops are bred. Since natural selection has preserved such alleles, they likely confer a selective advantage that increases the ability of plants to survive, Johal said.

The MAGIC technique is described in a review article published this month in the journal Crop Science.

Maize contains more genetic diversity than any other model organism, making it an ideal plant for gene exploration, Johal said. In fact, two lines of corn are more different from one another than humans are from chimpanzees, said study co-author Cliff Weil, a professor of agronomy.

"Maize grows in places as different as northern Quebec, where it is cold and growing seasons are short, and the Mexican highlands, where it is very hot and dry," he said. "Natural adaptation to different environments has come by combining just the right sets of alleles in each variation."

MAGIC is a new tool needed to find genes, Johal said. Many recent research methods used to this end involve mutagenesis, with scientists deliberately causing a specific gene or genes to malfunction in order to determine the gene's impact on the plant.

"Mutagenesis has worked well, but we are reaching a period of diminishing returns," Johal said. "We've identified most of the genes that have effects on their own, but now we need to understand how combinations of genes interact. We suggest going back to nature to find additional genes involved in a wide range of different processes."

Any genes discovered also could benefit other plants; all use the same pathway to fight infection, Johal said.

"The same approach could be used in other organisms, such as in animals," he said. "And insights could also apply to human disease."

To map genes, scientists often cross mutant plants with crop lines that have well-described genetics. In doing so, they usually try to reduce or eliminate the impact of unknown natural variants so the information they're looking for - typically regarding the mutant gene - is not altered.

"To date most of us were taught in genetics class that when you find a mutation, for example in corn, you cross it with corn from different backgrounds, pick the background where the mutant's appearance, or its phenotype, is the most dramatically altered, and then find the genetic changes that cause the phenotype," Weil said.

But Weil and Johal are instead looking for natural genes that either enhance or diminish certain traits.

"We are basically 'mining' natural variation for genes of interest," Weil said.

The research started when Johal crossed a mutant gene that affects lesions to a couple of different inbred lines of corn. In one cross it disappeared; in another it became toxic.

"We figured the natural variations in these two inbreds were having a huge effect and decided to take advantage of a large, existing set of mapping data for the two inbreds to find out why," Weil said.

Another example is sweet corn, Johal said. The varieties most people are familiar with derive from a specific mutation that originally rendered sweet-tasting kernels small and shrunken. But researchers bred it with various lines - effectively using natural variation to their advantage - to increase kernel size.

Funding from the National Science Foundation began last month for the study, which will also include educational components. North Carolina State University researcher Peter Balint-Kurti is a review co-author and study collaborator.

"The nice thing is knowing this idea is going to work," Weil said. ""The alleles, the variation in expression and the data to map them are already there. We will find a lot of things we expected and a whole lot of things we never even imagined."


Contact: Beth Forbes
Purdue University

Related biology news :

1. Einstein researchers develop a new way to study how breast cancer spreads
2. UNC study: Text messaging may help children fight off obesity
3. SNPs affect folate metabolism in study of Puerto-Rican adults
4. Proteomics study yields clues as to how tuberculosis might be thwarting the immune system
5. Seasonal affective disorder may be linked to genetic mutation, study suggests
6. Sibling study could lead to better treatments for inherited form of colon cancer
7. Nature study demonstrates that bacterial clotting depends on clustering
8. Study sheds light on genetic differences that cause a childhood eye disease
9. Grapes may aid a bunch of heart risk factors, animal study finds
10. Study confirms amphibians ability to predict changes in biodiversity
11. Study rules out inbreeding as cause of amphibian deformities
Post Your Comments:
(Date:11/19/2015)... VIEW, Calif. , Nov. 19, 2015  Based ... market, Frost & Sullivan recognizes BIO-key with the 2015 ... Leadership. Each year, Frost & Sullivan presents this award ... product line catering to the needs of the market ... the product line meets and expands on customer base ...
(Date:11/18/2015)... , November 18, 2015 ... published a new market report titled  Gesture Recognition Market ... Forecast, 2015 - 2021. According to the report, the global gesture ... is anticipated to reach US$29.1 bn by 2021, at ... North America dominated the global ...
(Date:11/17/2015)... , Nov. 17, 2015  Vigilant Solutions announces today ... its Board of Directors. --> ... recently retiring from the partnership at TPG Capital, one ... with over $140 Billion in revenue.  He founded and ... all the TPG companies, from 1997 to 2013.  In ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 2015 Capricor Therapeutics, Inc. (NASDAQ: ... discovery, development and commercialization of first-in-class therapeutics, today announced ... is scheduled to present at the 2015 Piper Jaffray ... EST, at The Lotte New York Palace Hotel in ... . --> . ...
(Date:11/24/2015)... Nov. 24, 2015  PDL BioPharma, Inc. (PDL) (NASDAQ: ... the company,s president and chief executive officer, will present at ... week in New York City . The ... December 1, 2015 at 9:30 a.m. EST. ... the website at least 15 minutes prior to the presentation ...
(Date:11/24/2015)... ... November 24, 2015 , ... Whitehouse Laboratories is pleased to announce that ... facility will be strictly dedicated to basic USP 61, USP 62 and USP 51 ... to have complete chemistry and micro testing performed by one supplier. Management ...
(Date:11/23/2015)... with a certain type of lung nodule visible on lung ... cancer than men with similar nodules, according to a new ... the Radiological Society of North America ... Lung nodules are small masses of tissue in the lungs ... appearance on CT. Solid nodules are dense, and they obscure ...
Breaking Biology Technology: