Navigation Links
Study: Rare deep-sea starfish stuck in juvenile body plan
Date:5/2/2011

A team of scientists has combined embryological observations, genetic sequencing, and supercomputing to determine that a group of small disk-shaped animals that were once thought to represent a new class of animals are actually starfish that have lost the large star-shaped, adult body from their life cycle.

In a paper for the journal Systematic Biology (sysbio.oxfordjournals.org), Daniel Janies, Ph.D., a computational biologist in the department of Biomedical Informatics at The Ohio State University (OSU), leveraged computer systems at the Ohio Supercomputer Center (OSC) to help support his contention that class-level status of Xyloplax does not reflect their evolutionary history.

"Although Xyloplax does not represent a new class, it an even more interesting animal now because it represents a rare example of how natural selection can shape the whole the life cycle," he explained. "By omitting the large adult stage, Xylopax found how to make a living in the nooks and crannies of sunken timbers on the deep-sea floor."

Janies collaborated on the paper with co-authors Janet R. Voight, Ph.D., in the department of Zoology at the Field Museum of Natural History in Chicago, and Marymegan Daly, Ph.D., in the department of Evolution, Ecology and Organismal Biology at Ohio State.

Janies and his colleagues are examining echinoderms starfish, sea urchins and their close relatives as part of a study for the United States' National Science Foundation's Assembling the Tree of Life project. Several OSU scientists, including Janies and Daly, have won these grants, typically valued at $3 million over five years, to better understand the interrelationships of all forms of life (http://echinotol.org).

As tree-of-life analyses are computationally difficult, the current project is enabled by the computational muscle of OSC's flagship system, the 9,500-node IBM 1350 Opteron "Glenn Cluster."

"Last year, OSC deployed a $4 million expansion to the Glenn Cluster with a specific focus on supporting researchers, like Drs. Janies and Daly, in Ohio's growing biosciences sector," said Ashok Krishnamurthy, interim co-executive director of OSC. "The center provides a world-class computing environment for amazing bioscience research projects at places like OSU's Department of Biomedical Informatics, the Research Institute at Nationwide Children's Hospital and the Cleveland Clinic."

The researchers examined both genetic and anatomical data to support their hypothesis, comparing Xyloplax with a total of 86 species representing major lineages of the five living classes of echinoderms (sea cucumbers, sea urchins, starfish, brittle stars, and sea lilies). For accurate comparisons, they applied several analytical methods to search for the shared mutations and changes in anatomy among the lineages.

The results describe the relationships in a phylogenetic tree representing the best-supported hypothesis on how Xyloplax evolved from other echinoderms. Phylogenetics is the study of the evolutionary relationships and changes among various biological species as they evolve from a common ancestor.

Prior to this study, molecular investigations of Xyloplax were limited, because specimens in two early collections in the 1980s were fixed in a solution which degrades DNA. Voight recently collected specimens of Xyloplax in the northeastern Pacific Ocean and carefully preserved them in ethanol. From these specimens, Daly was able to sequence several genes for Xyloplax. The newer specimens of Xyloplax also included several brooding females containing embryos, providing Janies with an unprecedented view of the creature's early development.

Janies and colleagues theorize that Xyloplax differs from other starfish species because it is progenetic that is, it has a rare, truncated life cycle that leaves the mature organism with features retained from its juvenile stages. For example, the arms of a starfish typically grow axially, like spokes of a wheel, as they develop from juveniles to adults, whereas Xyloplax grows along its circumference, like the wheel itself, and never develops arms.

"Irrespective of method or data sampling scheme, our results show that Xyloplax evolved from within starfish," Janies concluded. "Xyloplax is just a little starfish that has a strange body plan and habitat, so strange that many could not recognize it as a starfish until we unlocked its genome and development."


'/>"/>

Contact: Jamie Abel
jabel@osc.edu
614-292-6495
Ohio Supercomputer Center
Source:Eurekalert  

Related biology news :

1. Study: urban black bears live fast, die young
2. Study: Bird diversity lessens human exposure to West Nile Virus
3. Study: Tropical wetlands hold more carbon than temperate marshes
4. Study: Wildlife need more complex travel plans
5. Study: Elderly Women can increase strength but still risk falls
6. UNC study: Text messaging may help children fight off obesity
7. Study: Did early climate impact divert a new glacial age?
8. Study: Excessive use of antiviral drugs could aid deadly flu
9. UNC study: Tinkering with the circadian clock can suppress cancer growth
10. Study: Fluid buildup in lungs is part of the damage done by the flu
11. Study: Health undervalued in reproductive rights debate
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Study: Rare deep-sea starfish stuck in juvenile body plan
(Date:6/22/2016)... LOS ANGELES , June 22, 2016 ... of identity management and verification solutions, has ... cutting edge software solutions for Visitor Management, ... ® provides products that add functional ... The partnership provides corporations and venues with ...
(Date:6/21/2016)... 2016 NuData Security announced today that Randy ... principal product architect and that Jon Cunningham ... development. Both will report directly to Christopher ... reflect NuData,s strategic growth in its product and ... demand and customer focus values. ...
(Date:6/16/2016)... The global Biometric ... USD 1.83 billion by 2024, according to a ... proliferation and increasing demand in commercial buildings, consumer ... the market growth.      (Logo: ... of advanced multimodal techniques for biometric authentication and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... Ginkgo Bioworks , a leading organism design company ... as one of the World Economic Forum,s Technology ... companies. Ginkgo Bioworks is engineering biology to manufacture ... the nutrition, health and consumer goods sectors. The ... Fortune 500 companies to design microbes for their ...
(Date:6/24/2016)... ... 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in Ancona ... or pleural mesothelioma. Their findings are the subject of a new article on the ... are signposts in the blood, lung fluid or tissue of mesothelioma patients that can ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... June 23, 2016  The Prostate Cancer Foundation (PCF) is pleased ... and faster cures for prostate cancer. Members of the Class of 2016 were ... Read More About the Class of 2016 PCF Young ... ... ...
Breaking Biology Technology: