Navigation Links
Study: MicroRNA cooperation mutes breast cancer oncogenes
Date:5/7/2013

A University of Colorado Cancer Center study recently published in the journal Cell Death & Disease shows that turning up a few microRNAs a little may offer as much anti-breast-cancer activity as turning up one microRNA a lot and without the unwanted side effects.

It's a bit like the classic thought experiment known as the "tumor problem" formulated by Karl Dunker in 1945 and used frequently in the problem-solving literature: Imagine a person suffers from a malignant tumor in the center of her body. Radiation strong enough to kill the tumor kills any healthy tissue through which it passes. Without operating or killing healthy tissue, how can a doctor use radiation to kill the tumor?

The answer is to target the tumor from many angles many weak rays of radiation pass harmlessly through healthy tissue, but their combined power at the point of the tumor is enough to kill it.

In the present study, CU Cancer Center investigators used "weak" induction of multiple microRNAs that combined from many angles to regulate the known breast cancer oncogenes erbB2/erbB3 (the "tumor") without regulating non-target genes (the "healthy tissue").

"Imagine you have a microRNA that regulates genes A and B. Then you have another microRNA that regulates genes B and C. You amplify each microRNA to a degree that doesn't effect gene A or C, but their combined effect regulates gene B," says Bolin Liu, MD, assistant professor in the Department of Pathology at the University of Colorado School of Medicine.

microRNA is an attractive target in cancer therapy more microRNA can lead to less gene expression, turning down or off the oncogenes that cause cancer. However, to get the desired effect on gene expression frequently requires enhancing microRNA expression 100- or 1,000-fold (or more). And the induced microRNA likely has other genetic targets it will turn down other genes as well as the oncogene, sometimes with unfortunate consequences.

"The current study showed that two microRNAs enhanced only 3-to-6 times their natural expression could cooperate to regulate an oncogene that had previously only been affected by a microRNA enhanced by many, many times this amount," Liu says.

Specifically, the group's work shows that no one alone, but any two of the three microRNAs that regulate erbB2/erbB3 expression can affect the levels of proteins produced by the genes. These are miR-125a, miR-15b, and miR-205, which act in concert to regulate the expression of erbB2/erbB3, which are cancer-causing products of the oncogenes.

But in general, the group's novel technique could have implications far past erbB2/erbB3, allowing researchers and eventually doctors to mute the genes they want to mute without also dampening the expression of genes regulated by only one or only the other microRNA partner.


'/>"/>

Contact: Garth Sundem
garth.sundem@ucdenver.edu
University of Colorado Denver
Source:Eurekalert

Related biology news :

1. Study: Environmental policies matter for growing megacities
2. Study: Widespread test-and-treat HIV policies could increase dangerous drug resistance
3. Study: Probiotics reduce stress-induced intestinal flare-ups
4. Study: Antibiotics are unique assassins
5. International study: Excess dietary salt may drive the development of autoimmune diseases
6. Influenza study: Meet virus new enemy
7. Study: Resveratrol shows promise to protect hearing, cognition
8. Nature Methods study: Using light to control cell clustering
9. Study: Viral reactivation a likely link between stress and heart disease
10. Study: Odd biochemistry yields lethal bacterial protein
11. International study: Where theres smoke or smog, theres climate change
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/22/2016)... 22, 2016 According to the new market research ... Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and Software), Function (Contact and ... the market is expected to grow from USD 10.74 Billion in 2015 ... between 2016 and 2022. Continue Reading ... ...
(Date:11/17/2016)... 2016 Global Market Watch: Primarily supported ... Population-Based Banks and Academics) market is to witness a value ... shows the highest Compounded Annual Growth Rate (CAGR) of 10.75% ... the analysis period 2014-2020. North America ... by Europe at 9.56% respectively. ...
(Date:11/15/2016)... Research and Markets has announced the addition of the ... their offering. ... The global bioinformatics market ... 6.21 Billion in 2016, growing at a CAGR of 21.1% during ... is driven by the growing demand for nucleic acid and protein ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... , December 2, 2016 The ... 2021, growing at a CAGR of 7.3% during the forecast period ... hospitals and diagnostic laboratories segment accounted for the largest share of ... ... report on global immunohistochemistry (IHC) market spread across 225 pages, profiling ...
(Date:11/30/2016)... 30, 2016 /PRNewswire/ - Portage Biotech Inc. ("Portage" or ... is excited to announce the formation of EyGen, ... preclinical ophthalmology assets through proof of concept. EyGen,s ... by Portage Pharmaceuticals Limited and being developed for ... and anterior segment diseases. This agent has the ...
(Date:11/30/2016)... SAN DIEGO and BEIJING ... Ltd., a leading commercial provider of genomic services and ... expertise, announced today that it has completed a USD ... China Merchants Bank Co., Ltd.,s CMB International Capital Management ... SDIC Innovation Investment Management Co., Ltd. ("SDIC Innovation") and ...
(Date:11/30/2016)... Woburn, MA (PRWEB) , ... November 30, 2016 ... ... broadband light sources for advanced technology applications, introduces the 5th generation, ultra-bright, Laser-Driven ... the highly successful Laser-Driven Light Source (LDLS™) technology, the EQ-77 offers higher radiance ...
Breaking Biology Technology: