Navigation Links
Study: Marine pest provides advances in maritime anti-fouling and biomedicine

A team of biologists, led by Clemson University associate professor Andrew S. Mount, performed cutting-edge research on a marine pest that will pave the way for novel anti-fouling paint for ships and boats and also improve bio-adhesives for medical and industrial applications.

The team's findings, published in Nature Communications, examined the last larval stage of barnacles that attaches to a wide variety of surfaces using highly versatile, natural, possibly polymeric material that acts as an underwater heavy-duty adhesive.

"In previous research, we were trying to understand how barnacle adhesives were interacting with surfaces of different chemistries," said Mount, an author on the journal article and founder and director of the Okeanos Research Laboratory in Clemson's department of biological sciences. "Most biofouling researchers assume that cyprid larval adhesive plaques are primarily composed of proteins and peptides, but we discovered that lipids are also present, which means that the composition of the permanent adhesive is far more complicated that previously realized."

The torpedo-shaped cyprid larvae is the last larval stage before the animal undergoes metamorphosis to become the familiar barnacle seen on pilings and jetties along the coast. Once the cyprid has found a potentially suitable spot, it cements itself permanently in place and then undergoes metamorphosis to become an adult calcareous barnacle.

In order to survive and reproduce, benthic or bottom-dwelling marine invertebrates like barnacles need to attach themselves in close proximity to each other. These organisms have evolved an array of adhesion mechanisms that allow them to attach virtually anywhere, including nuclear submarines, maritime ships and offshore drilling rigs, and even to animals like turtles and whales.

"The ability of barnacles to adhere to surfaces that have very different physical and chemical properties is unique and provides insight into the unique physic-chemical properties of their larval adhesive," Mount said.

With funding from the Office of Naval Research, the researchers built a two-photon microscopy system and, in collaboration with Marcus Cicerone at the National Institute of Standards and Technology, employed his innovative technique known as Broadband Coherent Anti-Stokes Raman Scattering to delineate the two different phases of the barnacle cyprid adhesive plaque.

"Using these techniques, we found that the permanent adhesive is made up of two phases: a lipid phase and a protein phase," said Mount. "The lipid phase is released first. We believe that this lipid phase protects the protein phase from excess hydration and the damaging effects of seawater, and it may limit the protein phase from spreading too thin and losing its ability to securely adhere the larvae to a surface."

This is the first finding of functional roles of lipids in marine bioadhesives.

"The application of both two-photon microscopy and broadband coherent anti-Stokes Raman scattering clearly demonstrated the role of lipids, which we traced back to the cement glands and showed that they are produced and contained in a separate subsets of cells," he said.

The researchers' renewed understanding of barnacle cyprid adhesives will advance anti-fouling coatings for the maritime industry in the years to come and help develop a new class of bio-adhesives for medical and industrial applications.


Contact: Andrew S. Mount
Clemson University

Related biology news :

1. BYU study: Using a gun in bear encounters doesnt make you safer
2. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
3. Study: Exercise can lead to female orgasm, sexual pleasure
4. U of I study: Lose body weight before gaining baby weight
5. Study: Men who do load-bearing exercise in early 20s may be shielded from osteoporosis
6. USF study: Common fungicide wreaks havoc on freshwater ecosystems
7. Army study: DNA vaccine and duck eggs protect against hantavirus disease
8. Study: In-patient, out-patient stroke rehab might benefit from yoga
9. Study: Seeking Arctic methane has serious implications for Florida coastline
10. Study: Seeping Arctic methane has serious implications for Florida coastline
11. Study: No-fat, low-fat dressings dont get most nutrients out of salads
Post Your Comments:
Related Image:
Study: Marine pest provides advances in maritime anti-fouling and biomedicine
(Date:4/6/2017)... 6, 2017 Forecasts by Product ... Readers, by End-Use (Transportation & Logistics, Government & Public ... & Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business ... Are you looking for a definitive report on ... ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC ... announced that the United States Patent and Trademark Office ... broadly covers the linking of an iris image with ... transaction) and represents the company,s 45 th issued ... patent is very timely given the multi-modal biometric capabilities ...
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities and ... and behavioral), by technology (fingerprint, AFIS, iris recognition, facial ... and others), by end use industry (government and law ... financial and banking, and others), and by region ( ... , Asia Pacific , and the ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... 2017  VMS BioMarketing, a leading provider of patient support ... Nurse Educator (CNE) network, which will launch this week. The ... health care professionals to enhance the patient care experience by ... other health care professionals to help women who have been ... ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are ... 5.5 million people each year. Especially those living in larger cities are affected by ... in one of the most pollution-affected countries globally - decided to take action. , ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... (FDA) has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer ... treatment of osteosarcoma. SBT-100 is able to cross the cell membrane and bind ...
(Date:10/10/2017)... , ... October 10, 2017 ... ... cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing ... HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s ...
Breaking Biology Technology: