Navigation Links
Study: Gene therapy reverses effects of lethal childhood muscle disorder in mice
Date:2/28/2010

COLUMBUS, Ohio Reversing a protein deficiency through gene therapy can correct motor function, restore nerve signals and improve survival in mice that serve as a model for the lethal childhood disorder spinal muscular atrophy, new research shows.

This muscle-wasting disease results when a child's motor neurons nerve cells that send signals from the spinal cord to muscles produce insufficient amounts of what is called survival motor neuron protein, or SMN. This reduced protein in motor neurons specifically rather than in other cells throughout the body that contain the protein is caused by the absence of a single gene.

The researchers used an altered virus to deliver a portion of DNA that makes the SMN protein into the veins of newborn mice ranging in age from 1 to 10 days old. The SMN-laced viral vector injected into the youngest mice reached almost half of their motor neurons, resulting in improved muscle coordination, properly working electrical signals to the muscles and longer survival than in untreated mice, scientists said.

"We're replacing what we know is lost. And we have shown that when you put the protein in postnatally, it will rescue the genetic defect," said Arthur Burghes, professor of molecular and cellular biochemistry at Ohio State University and a senior co-author of the study. "This technique corrects the mice considerably more than any drug cocktails being studied as a potential treatment in humans."

Spinal muscular atrophy (SMA) is a genetic disorder that strikes about one in every 6,000 babies born in the United States, and leads to death in some affected children before age 2. According to the National Institutes of Health, there are many types of SMA, and life expectancy depends on how the disease affects breathing. There is no cure, but medicines and physical therapy help treat symptoms.

The research is published online in the journal Nature Biotechnology.

The scientists used a special form of a virus to deliver the SMN protein to nerve cells in the mice. This virus still has the capability to infect cells but has been altered so it will not copy itself and cause illness in humans, said Brian Kaspar, an investigator in the Research Institute at Nationwide Children's Hospital and assistant professor of pediatrics at Ohio State, also a senior co-author of the study.

Kaspar's lab previously determined that this particular viral vector can cross the blood-brain barrier, a characteristic that is required to ensure this protein reaches nerve cells in the spinal cord.

The research group demonstrated that effect in this study, as well, by intravenously injecting some of the disease-model mice with a green fluorescent protein that functioned as a marker of where the virus traveled in the body. Ten days after the injection, 42 percent of spinal motor neurons in these mice showed that they contained the fluorescent protein.

Similarly, mice with spinal muscular atrophy that received the SMN protein via the viral vector when they were 1 day old showed increases of the protein in the brain, spinal cord and muscles within 10 days, though the levels remained lower than the levels of SMN in normal mice.

Those higher levels of the protein appeared to be sufficient to reverse effects of the disease, Burghes said. That is significant because, based on mouse data, the disease is believed to affect people with SMN levels below about 20 percent of normal. But people with only 50 percent of the expected amount of the protein in their motor neurons do not have the disorder.

In addition, a single gene therapy treatment appears to reverse the disease, as opposed to drug treatments under investigation that might elevate SMN protein levels but would require a lifetime of taking medication.

In this study, the researchers tested mice with SMA after the treatment with the protein for their ability to roll themselves upright and for the presence of electrical signals from nerve cells to muscles.

Within 13 days after the injection, 90 percent of the treated mice had the muscle coordination needed to right themselves as quickly as normal animals. By this time, untreated SMA mice already were suffering symptoms that left them unable to right themselves. The day-1 treated mice also were nearly identical to normal mice in their ability to run on a wheel.

In the case of restored nerve impulses, 90 days after the gene therapy, there was no difference in nerve pulses between the treated SMA mice and normal mice, which indicated that the nerves to muscle developed correctly.

The treated SMA mice also gained weight and lived substantially longer than untreated mice with the disease, and some mice were still alive when the paper was submitted 250 days after they received the treatment, Kaspar said.

Improvements this dramatic were seen only in the mice that received SMN on their first two days of life. Later delivery reduced the impact of correction.

"We don't yet know the exact window of when it is capable of getting into the right cells in a human. Is it a month after birth, or a week after birth? That's still a question," Kaspar said.

Complicating this issue is the fact that symptoms of spinal muscular atrophy aren't typically apparent in infants, and the only existing newborn screening technique has not been implemented because it is considered prohibitively expensive.

"So if you have a technique that needs to be delivered early, then you need a newborn screening," Burghes noted.

The researchers hope to progress to human clinical trials of this gene therapy technique as soon as the requisite toxicology experiments are in place and federal regulators will allow. This study should help move the process along because of its inclusion of a single viral vector treatment of a 1-day-old macaque with the green fluorescent protein. The experiment showed that the treatment crossed the blood-brain barrier in this species as well, and penetrated motor neurons.


'/>"/>

Contact: Arthur Burghes
burghes.1@osu.edu
614-688-4759
Ohio State University
Source:Eurekalert

Related biology news :

1. Study: Crickets forewarn unborn babies about spiders
2. New UC Davis study: Climate tipping points may arrive without warning, says top forecaster
3. New study: Human running speeds of 35 to 40 mph may be biologically possible
4. Study: Sea stars bulk up to beat the heat
5. UF study: Exercise improves body image for fit and unfit alike
6. UNC study: Color-coded chart improves parents understanding of body mass index
7. Study: Popular supplement quercetin does not enhance athletic performance
8. Study: Oil speculators dominate open interest in oil futures
9. Study: Smoking may worsen malnutrition in developing nations
10. Study: Young Arctic muskoxen better at keeping warm than scientists thought
11. Study: Illegal fishing harming present and future New England groundfish fisheries
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... Feb. 7, 2017 The biometrics market ... the confluence of organizations, desires to better authenticate ... systems (password and challenge questions), biometrics is quickly ... systems. The market is driven by use cases, ... consumer and enterprise uses cases, with consumer-facing use ...
(Date:2/6/2017)... DENVER , Feb. 6, 2017 ... national security are driving border authorities to continue ... Acuity reports there are 2143 Automated Border Control ... Kiosks currently deployed at more than 163 ports ... between 2013 to 2016 achieving a combined CAGR ...
(Date:2/2/2017)... , Feb. 1, 2017  Central to ... and meaningful advances worldwide, The Japan Prize Foundation ... Prize, who have pushed the envelope in their ... and Communication. Three scientists are being recognized with ... achievements that not only contribute to the advancement ...
Breaking Biology News(10 mins):
(Date:2/21/2017)... Research and Markets has announced the addition of the ... to 2025" report to their offering. ... The Global Bioplastics & Biopolymers Market ... the next decade to reach approximately $8.9 billion by 2025. ... for all the given segments on global as well as regional ...
(Date:2/20/2017)... 20, 2017 This report analyzes the worldwide markets ... Types: Xylanase, Amylase, Cellulase, and Others. The report provides separate ... Japan , Europe , ... , and Rest of World. Read the ... forecasts are provided for the period 2015 through 2022. Also, ...
(Date:2/20/2017)... ... February 20, 2017 , ... ... radiotherapy patients, prevent chest wall collapses in pre-term infants with respiratory distress, ... a total of $600,000 in funding through the ninth round of the ...
(Date:2/20/2017)... ORLANDO, Fla. , Feb. 20, 2017  Atrius ... Health today entered into an agreement to develop ... physician-patient experience. By providing a holistic view of ... social determinants, Watson Cognitive Insights could be designed ... patients. Atrius Health is an innovative nonprofit healthcare ...
Breaking Biology Technology: