Navigation Links
Structure of cell signaling molecule suggests general on-off switch
Date:4/21/2013

DURHAM, N.C. A three-dimensional image of one of the proteins that serves as an on-off switch as it binds to receptors on the surface of a cell suggests there may be a sort of main power switch that could be tripped. These surface receptors are responsible for helping cells discern light, set the heart racing, or detect pain.

The finding, published online April 21, 2013, in the journal Nature by a research collaboration involving this year's Nobel laureates in chemistry, could help in the development of more effective drugs to switch on or off the cell receptors that regulate nearly every bodily function. Already, up to half of all drugs engage these receptors, including antihistamines and beta blockers, but many of the intricacies of how these important proteins work remain unknown.

"It's important to understand how this extraordinary family of receptors work," said co-author Robert J. Lefkowitz, M.D., James B. Duke Professor of Medicine and Howard Hughes Medical Institute Investigator. "This is the kind of finding that answers a basic curiosity, but can also be of benefit if we can develop new drugs or improve the ones we have."

The research marks a collaborative reunion between Lefkowitz and Brian K. Kobilka, M.D., chair of molecular and cellular physiology at Stanford University School of Medicine. The two researchers friends who first collaborated when Kobilka was a trainee in Lefkowitz's laboratory at Duke - shared the 2012 Nobel Prize in Chemistry for their discoveries involving the G-protein coupled receptors (GPCRs), which are activated by signaling proteins to detect hormones, neurotransmitters, pain, light.

In the current work, the researchers used X-ray crystallography to develop an atom-scale image of one of the principal signaling molecules that regulate GPCRs. This protein is called beta-arrestin1, which, among other things, works to dim a cell's response to hormones such as adrenalin.

The researchers were able to isolate and capture the beta-arrestin1 protein in an active state as it binds to a segment of the GPCR a first. That snapshot, in high resolution, revealed that the structural conformation or shape of the protein in its active state is strikingly different than when it is inactive.

Such changes suggest there may be a general molecular mechanism that activates the beta-arrestin1 a sort of main switch that controls the multi-functional signaling proteins.

"It's like there are brakes on in beta-arrestin1, and then when the beta-arrestin1 binds to a GPCR, the brakes are released, thereby activating beta-arrestin1," said Arun K. Shukla, PhD, assistant professor of medicine at Duke and co-lead author of the study.

The researchers are now pursuing additional structural imaging of the signaling complex consisting of beta-arrestin1 and the entire receptor protein.


'/>"/>

Contact: Sarah Avery
sarah.avery@duke.edu
919-660-1306
Duke University Medical Center
Source:Eurekalert

Related biology news :

1. Study led by NUS researchers proves the existence of 3 overstretched DNA structures
2. Mainz scientists confirm original tetrahedral model of the molecular structure of water
3. A*STAR scientists groundbreaking discovery of nucleus structure crucial to understanding diseases
4. Newly discovered plant structure may lead to improved biofuel processing
5. Nanostructures with living cells
6. Protein structure: Immune system foiled by a hairpin
7. Novel technique reveals dynamics of telomere DNA structure
8. Scientists discover structure of protein essential for quality control, nerve function
9. Banded mongooses structure monosyllabic sounds in a similar way to humans
10. New study defines the long-sought structure of a protein necessary for cell-cell interaction
11. Nanoengineers can print 3D microstructures in mere seconds
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... 5, 2017  The Allen Institute for Cell Science ... a one-of-a-kind portal and dynamic digital window into the ... the first application of deep learning to create predictive ... lines and a growing suite of powerful tools. The ... and future publicly available resources created and shared by ...
(Date:4/4/2017)... --  EyeLock LLC , a leader of iris-based identity ... and Trademark Office (USPTO) has issued U.S. Patent No. ... iris image with a face image acquired in sequence ... th issued patent. "The issuance ... multi-modal biometric capabilities that have recently come to market ...
(Date:3/30/2017)... 30, 2017 The research team of The ... (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae recovery ... of speed and accuracy for use in identification, crime investigation, immigration ... ... A research team ...
Breaking Biology News(10 mins):
(Date:8/11/2017)... 2017  Market researcher Kalorama Information was ... regarding the telemedicine market.  The telemedicine market ...  The article, "Heart and Asthma Monitors? ... information from Kalorama Information,s Remote Patient Monitoring ...  (Sleep, Diabetes, Vital Signs /EKG and ...
(Date:8/10/2017)... ... August 09, 2017 , ... As ... industry reach its ideal customers with the right message. Their effective, cutting-edge inbound ... Midwest company, we realize how crucial the agriculture industry is,” said David Phelps, ...
(Date:8/10/2017)... ... ... Okyanos Center for Regenerative Medicine has announced its First Annual Regenerative ... Bahama on September 27, 2017. This daytime event is free to attend, however space ... Health’s National Stem Cell Ethics Committee (NSCEC) and regulations laid out in the Stem ...
(Date:8/10/2017)... ... August 10, 2017 , ... CNA Finance Chief Research ... coverage on Next Group Holdings, Inc. and see's significant opportunity in the company's ... that cannot engage in traditional banking services. According to industry estimates, approximately 103 ...
Breaking Biology Technology: