Navigation Links
Striding towards a new dawn for electronics
Date:9/27/2010

This release is available in French.

Conductive polymers are plastic materials with high electrical conductivity that promise to revolutionize a wide range of products including TV displays, solar cells, and biomedical sensors. A team of McGill University researchers have now reported how to visualize and study the process of energy transport along one single conductive polymer molecule at a time, a key step towards bringing these exciting new applications to market. "We may easily study energy transport in a cable as thick as a hair, but imagine studying this process in a single polymer molecule, whose thickness is one-millionth of that!" said Dr. Gonzalo Cosa of McGill's Department of Chemistry, lead researcher.

Working in collaboration with Dr. Isabelle Rouiller of McGill's Department of Anatomy and Cell Biology, the team used state-of-the-art optical and electron microscopes and were able to entrap the polymer molecules into vesicles tiny sacs smaller than a human body cell. The researchers visualized their ability to transport energy in various conformations.

"This research is novel because we are able to look at energy transport in individual polymer molecules rather than obtaining measurements arising from a collection of billions of them. It's like looking at the characteristics of a single person rather than having to rely on census data for the entire world population," Cosa explains. Conductive polymers are long organic molecules typically referred to as nanowires. Components along the polymer backbone successfully pass energy between each other when the polymer is collapsed (coiled within itself), but the process is slowed down when the polymer backbone is extended. A greater understanding of how this process works will enable us to develop a range of technologies in the future."

The studies are critical to applications in daily life such as sensors involving the detection and the differentiation of cells, pathogens, and toxins. They may also help in the future to develop hybrid organic-inorganic light harvesting materials for solar cells.


'/>"/>

Contact: William Raillant-Clark
william.raillant-clark@mcgill.ca
514-398-2189
McGill University
Source:Eurekalert

Related biology news :

1. Discovery of a new molecular mechanism that guides visual nerves towards the brain
2. Towards a natural pacemaker
3. Cancer: Another step towards medication
4. Oceans journey towards the center of the Earth
5. Attitudes towards assisted reproduction and preimplantation genetic diagnosis
6. Scientists announce major progress towards historic Census of Marine Life in 2010
7. Nanosprings offer improved performance in biomedicine, electronics
8. Plastic electronics could slash the cost of solar panels
9. Flexible electronics could help put off-beat hearts back on rhythm
10. NPL supports growing organic electronics industry
11. Silicon with afterburners: Process developed at Rice could be boon to electronics manufacturer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... , April 11, 2017 NXT-ID, Inc. ... technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate governance ... Gino ... we look forward to their guidance and benefiting from their ...
(Date:4/5/2017)... NEW YORK , April 5, 2017 ... security, is announcing that the server component of the ... is known for providing the end-to-end security architecture that ... customers. HYPR has already secured over 15 ... system makers including manufacturers of connected home product suites ...
(Date:4/3/2017)... , April 3, 2017  Data captured ... engineering platform, detected a statistically significant association ... prior to treatment and objective response of ... potential to predict whether cancer patients will ... treatment, as well as to improve both pre-infusion ...
Breaking Biology News(10 mins):
(Date:4/28/2017)... , ... April 28, 2017 , ... ... organization (CRO) has validated a 0.2 ng/mL lower limit (LLOQ) assay for nicotine ... 0.5 ng/mL LLOQ assay, the ultra-low trace nicotine assay meets additional needs of ...
(Date:4/27/2017)... ... April 27, 2017 , ... ... today announced their digital pathology technology has the potential to eliminate subjectivity in ... centers in The Netherlands as part of the 2017 ISBI CAMELYON Digital ...
(Date:4/27/2017)... ... April 27, 2017 , ... Arrowhead Publishers is pleased to ... coming to San Diego, CA on September 27-28, 2017. Leaders from the pharmaceutical, ... advances in the treatment of various types of pain. There are also extended ...
(Date:4/27/2017)... Orleans, La. (PRWEB) , ... ... ... Monitoring Technologies today announced a comprehensive rebrand and a name change to ... for the industrial and laboratory monitoring of polymer and biopharmaceutical manufacturing processes ...
Breaking Biology Technology: