Navigation Links
Stretching old material yields new results for energy- and environment-related devices
Date:6/21/2011

Researchers at Virginia Tech in Blacksburg, Va. recently found a way to improve electricity generating fuel cells, potentially making them more efficient, powerful and less expensive. Specifically, they discovered a way to speed up the flow and filtering of water or ions, which are necessary for fuel cells to operate.

Simply put, the researchers stretched Nafion, a polymer electrolyte membrane, or PEM, commonly used in fuel cells and increased the speed at which it selectively filters substances from ions and water.

The resulting process could be important to a number of energy and environment-related applications such as any of several industrial processes that involve filtering, including improving batteries in cars, water desalination and even the production of artificial muscles for robots.

The journal Nature Materials published the results in its June 19 issue in the article, "Linear coupling of alignment with transport in a polymer electrolyte membrane," by Jing Li, Jong Keun Park, Robert B. Moore and Louis A. Madsen, all with the chemistry department in the College of Science and the Macromolecules and Interfaces Institute at Virginia Tech.

"I got the idea for some of these experiments after I saw Bob Moore give a talk at the University of North Carolina about Nafion when I was a post-doc there working with liquid crystals," said Madsen, an assistant professor of physical, polymer and materials chemistry who led the study.

In order to improve PEMs, Madsen and Virginia Tech Chemistry Professor Robert Moore studied exactly how water moves through Nafion at the molecular level and measured how changes in the structure of the material affected water flow. They found stretching it caused channels in the PEM material to align in the direction of the stretch, allowing water to flow through faster.

"Stretching drastically influences the degree of alignment," said Madsen. "So the molecules move faster along the direction of the stretch, and in a very predictable way. These materials actually share some properties with liquid crystals--molecules that line up with each other and are used in every LCD television, projector and screen."

"This is a very clever approach which demonstrates the advantages of interdisciplinary materials research and which may offer important benefits to both energy technologies and sustainability of our natural resources," said Andy Lovinger, polymers program director in the National Science Foundation's Division of Materials Research, which funded the study.

Nafion was discovered in the 1960's and is made up of molecules that combine the non-stick and tough nature of Teflon with the conductive properties of an acid. It is one of many PEMs used to filter water and ions that the researchers say could benefit from the stretching process.


'/>"/>

Contact: Lisa Van Pay
lvanpay@nsf.gov
703-292-8796
National Science Foundation
Source:Eurekalert  

Related biology news :

1. DNA stretching -- A new technique being carried out at CIC microGUNE to detect illnesses
2. Stretching the truth: JILA biophysicists help unravel DNA stretching mystery
3. Stretching molecules yields new understanding of electricity
4. Materials scientist and entrepreneur Dr. John Rogers awarded $500,000 Lemelson-MIT Prize
5. Stevens conference explores latest innovations in antimicrobial biomaterials research
6. UH chemist investigates material for next-generation computer memory
7. The ultimate camo: Team to mimic camouflage skill of marine animals in high-tech materials
8. Researchers combine active proteins with material derived from fruit fly
9. NJIT professor develops a biologically inspired catalyst, an active yet inert material
10. Biomaterial banks for research -- clear strategies and recommendations needed
11. NC State develops material to remove radioactive contaminants from drinking water
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stretching old material yields new results for energy- and environment-related devices
(Date:3/15/2016)... March 15, 2016 Yissum Research Development ... technology-transfer company of the Hebrew University, announced today the ... sensing technology of various human biological indicators. Neteera Technologies ... million from private investors. ... the detection of electromagnetic emissions from sweat ducts, enables ...
(Date:3/10/2016)... --> --> ... and Access Management Market by Component (Provisioning, Directory Services, ... Organization Size, by Deployment, by Vertical, and by Region ... market is estimated to grow from USD 7.20 Billion ... a Compound Annual Growth Rate (CAGR) of 12.2% during ...
(Date:3/8/2016)... RALEIGH, N.C. , March 8, 2016 /PRNewswire/ ... biometric sensor technology, today announced it has secured ... led by GII Tech, a new venture fund ... LLC, with additional participation from existing investors TDF ... use the funds to continue its triple-digit growth ...
Breaking Biology News(10 mins):
(Date:5/3/2016)... ... May 03, 2016 , ... In a list published ... of the state’s 76 fastest-growing private companies; a small percentage of the state's 615,000+ ... organizations on the percent change in revenue from 2012 to 2015. , ...
(Date:5/3/2016)... ... May 03, 2016 , ... ... to unique bioresearch materials from laboratories across the globe, today announced the availability ... increase the pace of research toward treatment and prevention measures for the Zika ...
(Date:5/3/2016)... May 3, 2016  Dr. Thomas P. McHugh ... The Woodlands, Texas , now offers ... of treated fat cells in just 25-minutes, leaving a ... 90 percent of Americans report feeling bothered by excess ... reduction procedures are a growing industry. This innovative new ...
(Date:5/2/2016)... , May 2, 2016 Q ... its technology partner Mannin Research Inc. will be attending ... which takes place from May 1-5, 2016 in ... be meeting with its vendors and research partners. The ... development goals and other collaborative opportunities for the MAN-01 ...
Breaking Biology Technology: