Navigation Links
Strengthening legumes to tackle fertilizer pollution
Date:4/23/2013

LEMONT, Ill. The overuse of nitrogen fertilizers in agriculture can wreak havoc on waterways, health and the environment.

An international team of scientists aims to lessen the reliance on these fertilizers by helping beans and similar plants boost their nitrogen production, even in areas with traditionally poor soil quality.

Researchers from the Center of Plant Genomics and Biotechnology at the Technical University of Madrid (UPM) and the Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratory report as an advance article April 5 for the Metallomics journal of The Royal Society of Chemistry on how to use X-ray analysis to map a path to increasing the amount of nitrogen that legumes deposit into the soil.

Cultivation of legumes, the plant family that includes peas, beans, alfalfa, soybeans, and peanuts, is one of the main ways farmers add natural nitrogen to agricultural fields. Rotating bean and corn crops to take advantage of the nitrogen beans deposit in the soil has long been a global farming tradition. Legumes use iron in the soil to carry out a complex chemical process called nitrogen fixation, which collects atmospheric nitrogen and converts it into organic forms that help the plant grow. When the plant dies, the excess nitrogen is released back into to the soil to help the next crop.

But often legumes are grown in areas with iron-depleted soil, which limits their nitrogen fixation. That's where research can lend a hand. The Argonne-UPM team has created the world's first model for how iron is transported in the plant's root nodule to trigger nitrogen fixation. This is the first step in modifying the plants to maximize iron use.

"The long-term goal is to help sustainable agriculture practices and further diminish the environmental damage from overuse of nitrogen fertilizers," said Manuel Gonzalez-Guerrero, lead author of the paper from UPM. "This can be done by maximizing the delivery of essential metal oligonutrients to nitrogen-fixing rhizobia."

The research team, which included Lydia Finney and Stefan Vogt from the APS, used high-energy X-rays from the 8-BM and 2-ID-E beamlines of the APS to track the distribution of minute iron amounts in the different developmental regions of rhizobia-containing roots. This is the first high-energy X-ray analysis of plant-microbe interactions.

X-rays, such as those from the APS, provided a high sensitivity to elements and a high spatial resolution not attainable by other means. Full details can be found in the paper Iron distribution through the developmental stages of Medicago truncatula nodules.

In future studies at the APS, Gonzalez-Guerrero hopes to identify and characterize the key biological proteins responsible for iron transportation. That would give researchers targets to manipulate and screen for new legume varieties with increased nitrogen-fixation capabilities and higher nutritional value.


'/>"/>

Contact: Tona Kunz
tkunz@anl.gov
630-252-5560
DOE/Argonne National Laboratory
Source:Eurekalert

Related biology news :

1. University leads £6 million EU project to tackle obesity
2. Backpainrelief.net Tackles Sports Injuries with Infographic
3. £12 million funding to tackle devastating livestock and poultry viruses
4. Mathematicians tackle global issues
5. Mature T cells can switch function to better tackle infection
6. International conference to tackle climate-change threats to agriculture
7. Fertilizers could help tackle nutritional deficiency in African country, researchers say
8. BGI and TGAC join efforts to tackle global challenges in food security, energy and health
9. Penn conference tackles complex relationship between urbanization and food
10. NTU scientist develops a multi-purpose wonder material to tackle enviromental challenges
11. After the Genome tackles tough questions about medicine, miracles and morality
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/24/2017)... 2017 Biopharm Reports has carried out ... of nuclear magnetic resonance spectroscopy (NMR). This involved ... current practices, developments, trends and end-user plans over ... and opportunities. These areas include growth in the ... and innovation requirements, hyphenated NMR techniques, main suppliers ...
(Date:1/19/2017)... and PUNE, India , January 19, 2017 ... Biometric Sensor Market, Opportunities and Forecast, 2014 - 2022," the global biometric ... CAGR of 9.6% from 2016 to 2022. In 2015, Asia-Pacific ... security for both public and private sectors. Continue ... ...
(Date:1/13/2017)... 2017 Sandata Technologies, LLC, a leading ... industry, including Electronic Visit Verification™ (EVV™), announced today ... as Senior Vice President of Product Management. ... homecare experience to Sandata, where he will be ... align Sandata,s suite of solutions with the needs ...
Breaking Biology News(10 mins):
(Date:2/17/2017)... , Feb. 17, 2017  Protagonist Therapeutics, ... data on its oral peptide drug candidates, PTG-100 ... of the European Crohn,s and Colitis Organization (ECCO).  ... Barcelona, Spain from February 15 ... detail preclinical data on Protagonist drug candidates PTG-100 ...
(Date:2/16/2017)... GREENWICH, Conn. , Feb. 16, ... focused on venture growth investments in biotechnology and ... Josh Richardson , M.D. to Managing Director. ... companies.  He is a board observer at InfaCare ... Longitude,s investments in Aimmune Therapeutics, Akebia Therapeutics, Cadence ...
(Date:2/16/2017)... , Feb. 16, 2017   Capricor Therapeutics, ... clinical-stage biotechnology company developing first-in-class biological therapies for ... it has elected to terminate its license agreement ... receptor agonists, including Cenderitide. "Our decision ... as we prioritize our efforts to advance our ...
(Date:2/16/2017)...  Dermata Therapeutics, LLC, a biotechnology company developing ... of dermatological diseases, today announced it has completed ... into a $5 million credit facility with Silicon ... capital for general corporate purposes to further Dermata,s ... of serious diseases treated by dermatologists.   ...
Breaking Biology Technology: