Navigation Links
Streamlining brain signals for speed and efficacy
Date:10/22/2008

LA JOLLA, CA Life exists at the edge of chaos, where small changes can have striking and unanticipated effects, and major stimuli may go unheard. But there is no space for ambiguity when the brain needs to transform head motion into precise eye, head, and body movements that rapidly stabilize our posture and gaze; otherwise, we would stumble helplessly through the world, and our vision would resemble an undecipherable blur.

In their latest study, published in the current issue of the journal Neuron, researchers at the Salk Institute for Biological Studies explain how the vestibular-ocular reflex, which keeps us and the world around us stable, achieves the accuracy it is famous for. Unlike most signals in the brain, whose transmission is frequency-dependent, signals from the vestibular system of the inner ear, which detects motion, are relayed in a linear fashion no matter how fast the neurons are firing.

"Most of what we know about signal transmission between neurons comes from studying special cortical or hippocampal neurons, but many vital functions, such as balance and breathing, are controlled by neurons in the brain stem, which, as we discovered, work very differently," says Howard Hughes Medical Institute investigator Sascha du Lac, Ph.D., an associate professor in the Systems Neurobiology Laboratory. "Pursuing the mechanisms that control neurons in the brain stem is important for developing new classes of biotherapeutic agents."

Du Lac and her team focus on a simple type of learning: How does the brain learn to stabilize an image on the retina and use eye movement to compensate for a moving head? This so-called vestibular-ocular reflex, or VOR, needs to be fast; for clear vision, head movements must be compensated for almost immediately. To achieve the necessary speed, the VOR-circuit involves only three types of neurons: sensory neurons, which detect head movement; motor neurons, directing eye muscles to relax or contract; and so-called vestibular nucleus neurons in the brainstem that link the two.

While the brevity of this circuit keeps reflex times short, it was less clear what qualities of the circuit ensure that eye velocity is precisely matched to head velocity. Since the VOR operates accurately no matter how fast we move our head, scientists long expected that the signal transmission at the synapsesspecialized points of contact between nerve cellsthat connect the sensory onto the vestibular nucleus neurons would be linear.

However, transmission at most synapses is non-linear. Brain cells signal by sending electrical impulses along axons, long, hair-like extensions that reach out to neighboring nerve cells. When an electrical signal reaches the end of an axon, the voltage change triggers release of neurotransmitters, the brain's chemical messengers. These neurotransmitter molecules then travel across the space between neurons at a synapse and trigger an electrical signal in the adjacent cellor not.

"Most known synapses act as information filters, and both the probability and the extent of neurotransmitter release as well as the efficacy of the postsynaptic response depend heavily on the recent history of the synapse," says first author Martha W. Bagnall, Ph.D., a former graduate student in du Lac's lab and now a postdoctoral researcher at the University of California, San Diego. "But no matter whether you go jogging or watch TV on your couch, the VOR needs to accurately match sensory input with motor output," she adds.

When Bagnall and her colleagues took a closer look at the first synapse in the VOR circuit, they found that no matter how fast the sensory neuron was firing, the same amount of neurotransmitter was released. And instead of vacillating, the post-synaptic neuron took the information and transmitted it faithfully.


'/>"/>

Contact: Gina Kirchweger
Kirchweger@salk.edu
858-453-410-01340
Salk Institute
Source:Eurekalert

Related biology news :

1. Emotion and scent create lasting memories -- even in a sleeping brain
2. Key to function of dinosaur crests found in brain structure
3. MU brain imaging center provides research for autism, schizophrenia and Parkinsons disease
4. Brain structure provides key to unraveling function of bizarre dinosaur crests
5. Brain-nourishing molecule may predict schizophrenia relapse
6. Brainy genes, not brawn, key to success on mussel beach
7. Risk and reward compete in brain
8. Food for thought -- regulating energy supply to the brain during fasting
9. Millisecond brain signals predict response to fast-acting antidepressant
10. During exercise, the human brain shifts into high gear on alternative energy
11. Penn biophysicists create new model for protein-cholesterol interactions in brain and muscle tissue
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... June 9, 2016 Paris ... Teleste,s video security solution to ensure the safety of people ... during the major tournament Teleste, an international ... and services, announced today that its video security solution will ... to back up public safety across the country. The system ...
(Date:6/2/2016)... , June 2, 2016   The Weather Company ... announcing Watson Ads, an industry-first capability in which consumers will ... being able to ask questions via voice or text and ... Marketers have long sought an ... consumer, that can be personal, relevant and valuable; and can ...
(Date:5/20/2016)... MINNEAPOLIS , May 20, 2016  VoiceIt ... technology partnership with VoicePass. By working ... user experience.  Because VoiceIt and VoicePass take slightly ... two engines increases both security and usability. ... expressed excitement about this new partnership. ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... San Diego, CA (PRWEB) , ... June 27, 2016 , ... ... mClinical solutions for clinical trials, announced today the Clinical Reach Virtual Patient ... and their care circle with the physician and clinical trial team. , Using the ...
(Date:6/27/2016)... PHILADELPHIA , June 27, 2016  Liquid ... today announced the funding of a Sponsored Research ... study circulating tumor cells (CTCs) from cancer patients.  ... changes in CTC levels correlate with clinical outcomes ... therapies. These data will then be employed to ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering ... retention in this eBook by providing practical tips, tools, and strategies for clinical ...
Breaking Biology Technology: